Making Sense of the promising role of new refrigerants.

Webinar Series
Making Sense of Natural Refrigerants

May 20, 2014
Agenda

- New European F-Gas Regulation (April 2014)
- Hydrocarbon Refrigerants, Propane, Isobutane
- Ammonia Refrigeration, still going strong
- \(\text{CO}_2 \) System Architecture Options
 - Secondary
 - Cascade
 - Booster Transcritical
- Summary
Europe’s New F-Gas Phase Down And Bans Goes Into Effect Jan 1, 2015

<table>
<thead>
<tr>
<th>Service and maintenance ban</th>
<th>GWP</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFCs</td>
<td>2500</td>
<td>Jan. 2020</td>
</tr>
</tbody>
</table>

‘Placing on the market’ (new equipment) bans

Domestic refrigerators and freezers	150	Jan. 2015
Refrigerators and freezers for commercial use	2500	Jan. 2020
(hermetically sealed systems)		
Refrigerators and freezers for commercial use	150	Jan. 2022
(hermetically sealed systems)		
Stationary refrigeration equipment	2500	Jan. 2020
(except equipment for temperatures below -50 deg C)		
Multipack centralized refrigeration systems for	150	Jan. 2022
commercial use with a capacity of ≥ 40 kW (140 kBTU/hr)		
(except in the primary refrigerant circuit of cascade systems, where fluorinated greenhouse gases with a GWP of less than 1500 may be used)		
Movable room air-conditioning appliances	150	Jan. 2020
(hermetically sealed equipment which is movable between rooms by the end user)		
Single split air-conditioning systems containing < 3 kg	750	Jan. 2025

GWP Weighted Cap (% Of Baseline)

- **F-Gas Baseline 2009-2012**
- **EU – F Gas**
- **Non A5 Countries (US)**
- **A5 Countries (Asia etc)**

<table>
<thead>
<tr>
<th>Year</th>
<th>EU – F Gas</th>
<th>Non A5 Countries (US)</th>
<th>A5 Countries (Asia etc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2055</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Refrigerant Related Actions In United States And North America

- US, Canada and Mexico Presenting the North American Proposal Amendment to the Montreal Protocol
- US EPA announced two rulemakings for this summer affecting new equipment only
 - 1st rule: approve new lower GWP fluids, including R32 in specific applications
 - 2nd rule: “change status” of R404A in multiplex supermarket refrigeration systems, R134a in auto AC and reach-in coolers (and foam as well)
Refrigerants Landscape

Pressure or Capacity

R-410A Like

R404A & R407/22 Like

R134a Like

Today's HFC Refrigerants

Qualitative Chart – Not To Scale
Key Features of Hydrocarbons

R290 (Propane), R600a (Isobutane)

- **A3** Classified, Highly Flammable
- 0 ODP, GWP = 3
- Environmentally benign refrigerants
- Lower discharge temperatures Vs HCFC/HFC, improving the system reliability.
- Reduction in refrigerant charge
 - Compared to R22 and R134a, R290 results in excess of 40% reduction in charge.
 - R290 Pressure/temperature characteristics are similar to R22
- R600a is widely used in domestic applications and many countries
 - 95% of domestic refrigerators in Europe work with R600a, and now Argentina, Brazil, China and other countries in Asia are beginning to adopt R600a in refrigerators and freezers.
 - Its smaller volumetric capacity and higher pressure ratios, limit it to very small capacities.
Propane is Growing in Acceptance Within Constraints of its Flammability

- Propane (R290) is classified A3, a non-toxic, highly flammable refrigerant by ASHRAE
- Current UL Standards for A3 refrigerants allow up to:
 - 57 gm (2oz) in household refrigeration
 - 150 gm (5.3oz) in commercial reach-in refrigeration
 - 300 gm (10.6oz) in commercial walk-in refrigeration
- No AC or heating applications allowed with A3 refrigerants per UL standards; standards under revision now
- ISO 5149 and IEC 60335-2-40 Standards allow higher charge limits for all applications.

Propane applications will grow, especially in the smaller sizes; safety in service will be important for adoption.
R290 vs R404A – A Medium Temperature Comparison

Medium Temperature: 20°F

<table>
<thead>
<tr>
<th>Property</th>
<th>R290</th>
<th>R404A</th>
<th>R290/R404A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suction Density</td>
<td>0.53 lb/ft³</td>
<td>1.53 lb/ft³</td>
<td></td>
</tr>
<tr>
<td>Evap Latent Heat</td>
<td>165.2 Btu/lb</td>
<td>73.8 Btu/lb</td>
<td></td>
</tr>
<tr>
<td>Evap Capacity*</td>
<td>87.3 Btu/ft³</td>
<td>112.9 Btu/ft³</td>
<td>77%</td>
</tr>
</tbody>
</table>

* Suction Density x Evap Latent Heat

For same displacement, R290 has less capacity – most shortfall made up in system due to better heat transfer resulting in higher saturated suction.
Early Adopters of Natural Refrigerants

Achievement
Member companies have collectively:

- placed more than 2.5 million HFC-free refrigeration units
- avoided more than 1 million tonnes of emissions in CO₂eq
 (based on the avoided HFC refrigerant emissions)

Ammonia – Natural Refrigerant

Natural Refrigerant, Environmentally Friendly:
- One of the most abundant gases in the environment
- Exists all around us (air, water, soil, produced by our kidneys)
- Approx 1.7 times lighter than air
- Breaks down rapidly in the environment
- NH3 (R-717): Nitrogen and Hydrogen
- Ozone Depletion Potential (ODP) = 0
- Global Warming Potential (GWP) = 0
Ammonia Usage

Human production: 198 million tons annually (2012)
- Second most produced chemical (after petroleum)
- ~80% is produced for fertilizer
- NH3 (R-717) refrigerant 99.98% pure ~ 2% of total production
- Cheap affordable refrigerant
Industrial Uses for Ammonia Refrigeration

- Less refrigerant required, smaller pipes required due to less mass flow: *over 9 times more energy content (Btu/lb) than HFC’*
 - Ammonia +20F 478.5 BTU/lb
 - R404A +20F 51.1 BTU/lb
- Up to 25% more efficient in energy usage
- Excellent refrigerant for heat recovery
- Low cost refrigerant and oils:
 - Mineral and semi-synthetic oils
- Low maintenance, Low leakage rates require less refrigerant top up:
 -Leaks found and dealt with immediately due to smell, alarms
Ammonia Applications

- **Food and beverage processing:**
 - Dairy, meat processing, breweries, baked goods, frozen foods
- **Refrigerated cold storage**
- **Recreational ice:**
 - Hockey rinks, curling, ice skating paths
 - Olympic speed skating, ski jump, bobsled tracks
- **Ground soil freezing, mining HVAC**
- **HVAC, District heating and cooling, heat pumps**
CO$_2$ (R-744) for Refrigeration

- **SECONDARY or Liquid Recirc.**
- **CASCADE**
- **TRANSCRITICAL BOOSTER**
Properties of CO₂

- Natural refrigerant, OPD=0, GWP=1
- Non Toxic, Non Flammable, Odorless
- Atmosphere comprises approx. 0.04% CO₂ (370 ppm)
- Dangerous for people in concentrations exceeding 0.5% v/v (5000ppm)
- Heavier than air (will settle at the lowest level)
- Better heat transfer properties than HCFC and HFC
- Lower Viscosity in liquid and gas than HFCs
Properties of CO$_2$

- Typical smaller line sizes Vs DX piping systems
- Less sensitive to pressure drops
- Significant reduction in refrigerant charge Vs HFCs
- Inexpensive refrigerant compared with HCFC and HFC
- Excellent material compatibility
- System energy performance equivalent or better than traditional HFC systems depend on environment and system design
- High triple point -69.88F (-56.6C), Low critical point 87.8F (31C). (158F between them)
Basic Properties of R744 with R404A and R134a Refrigerants Commonly used in the Retail Sector.

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>R744</th>
<th>R404A</th>
<th>R134a</th>
<th>R407A</th>
<th>R407F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature at atmospheric pressure</td>
<td>-109.3°F (-78.5°C)</td>
<td>-50.8°F (-46°C)</td>
<td>-14.8°F (-26°C)</td>
<td>-41.8°F (-41°C)</td>
<td>-45.5°F (-43°C)</td>
</tr>
<tr>
<td></td>
<td>Temp of dry ice</td>
<td>(Saturation temp.)</td>
<td>(Saturation temp.)</td>
<td>(Mid Point Saturation temp.)</td>
<td>(Mid Point Saturation temp.)</td>
</tr>
<tr>
<td>Critical temperature</td>
<td>87.8°F (31°C)</td>
<td>161.6°F (72°C)</td>
<td>213.8°F (101°C)</td>
<td>179.6°F (82°C)</td>
<td>181.4°F (83°C)</td>
</tr>
<tr>
<td>Critical pressure</td>
<td>1056psig (72.8 bar g)</td>
<td>503psig (34.7 bar g)</td>
<td>590psig (40.7 bar g)</td>
<td>641psig (44.2 bar g)</td>
<td>674psig (46.5 bar g)</td>
</tr>
<tr>
<td>Triple point pressure</td>
<td>75 psia (4.15 bar abs)</td>
<td>0.44psia (0.03 bar abs)</td>
<td>0.734psia (0.005 bar abs)</td>
<td>0.18psia (0.013 bar abs)</td>
<td>TBC</td>
</tr>
<tr>
<td>Pressure at a saturated temperature of 20°C</td>
<td>815psig (56.2 bar g)</td>
<td>144psig (9.9 bar g)</td>
<td>68psig (4.7 bar g)</td>
<td>133psig (9.2 bar g)</td>
<td>139psig (9.6 bar g)</td>
</tr>
<tr>
<td>Global warming potential</td>
<td>1</td>
<td>3922</td>
<td>1430</td>
<td>1990</td>
<td>1824</td>
</tr>
</tbody>
</table>
Pressure-Temperature Chart For CO₂

87.8°F (1056 psig) - solid

-69.88°F (60.9 psig) - liquid

Critical point:
- 31°C / 72.8 bar g
- 87.8°F (1056 psig)

Triple point:
- -57°C / 4.2 bar g
- -69.88°F (60.9 psig)
Subcritical vs. Transcritical Operation
Holistic Approach To Evaluating Choices Can Minimize “Unintended Consequences”

- Safety
 - Toxicity, Flammability
 - Working Pressures

- Performance
 - Physical Properties
 - Capacity, Energy (Annual / Peak Energy)

- Economics
 - Technology Changes
 - Total Cost of Ownership

- Environment
 - Stratospheric Ozone (Montreal Protocol)
 - Life Cycle Climate Performance - LCCP (GWP/TEWI)

System focused approach to evaluating refrigerants using a standard method of comparison is important
Global CO₂ Presence in Refrigeration

MAP OF CO₂ TRANSCRITICAL & CO₂ CASCADE/SECONDARY STORES WORLDWIDE IN 2013

DATA BY COUNTRY

TOTAL CO₂, TC SUPERMARKETS
3080(+)

TOTAL CO₂, CASCADE/SECONDARY SUPERMARKETS
2020(+)

These figures are based on a 2013 survey of leading system suppliers and commercial end-users.
The high stage system cools the liquid CO$_2$ in the secondary circuit.
The CO$_2$ is pumped around the load.
It is volatile, so unlike a conventional secondary fluid such as glycol it does not remain as a liquid, instead it partially evaporates.
It therefore has a significantly greater cooling capacity than other secondary fluids.
This reduces the pump power and the temperature difference at the heat exchanger.
The CO₂ would typically be cooled to -20°F (200 psig) for the LT load
+20°F (407 psig) for the MT load
The high stage system is a simple chiller type system, typically running on an HFC or HC or Ammonia.
Cold Storage Warehouse Improves Efficiency with Ammonia / Pumped CO$_2$ System

Results

- Ammonia / CO2 Brine System
- 1000 tons of efficient ammonia / CO2 refrigeration
- Dual slide valve efficiency avoids $100,000 of VFDs
- 15% higher efficiency than comparable technologies
- Non-ozone depleting refrigerants with Zero global warming potential
- Vilter Single screw with ammonia achieves increased performance
- Designed for 20 years service without costly maintenance

Application

Pumped liquid CO2 secondary system refrigerated by ammonia for 240,000 square foot product and dairy cold storage warehouse

Customer

With annual sales of over $100 billion and over 65,000 employees, METRO INC. A leader in the food and pharmaceutical sectors in Quebec and Ontario where it operates a network of more than 600 food stores as well as over 250 drugstores.

CIMCO is an international refrigeration leader in the industrial refrigeration food, beverage and cold storage markets.
Selecting the Best System
Booster vs. Cascade vs. Secondary

SECONDARY

CASCADE

TRANSCRITICAL BOOSTER

CO2 DX

CO2 DX

CO2 DX
CO$_2$ Subcritical Refrigeration Cycle
Simple Cascade System comprises:

- The low stage provides the cooling load
 - It uses CO₂, and is always subcritical
- The high stage, absorbs heat from the condensing CO₂ at the cascade heat exchanger.
- The CO₂ condensing temperature is maintained below the critical point.
- The high stage is usually a simple, close coupled system.
- It is controlled by the pressure in the low stage receiver.
- Pressure similar to R410A
Typical Retail Cascade System - Schematic
System Typical Operating Pressures Cascade

Low-Side (Suction)
- **Typ. Operating Suction** 200-275 psig

High-Side (Discharge and Receiver)
- **Typ. Operating Discharge** 400-500 psig

Normal Operating Suction: 200-275 psig
High Suction: >275 psig
Low Suction: <200 psig

Low-Side Pressure Relief (Recip.): 350 psig
Low-Side Pressure Relief (Scroll): 475 psig

Normal Operating Discharge: 400-500 psig
High Discharge: >500 psig
Pressure Regulating Relief Valve: 560 psig
Main Pressure Relief Valve: 625 psig

Low Discharge: <400 psig

© Courtesy of “The Green Chill Partnership and Hill Refrigeration”
Selecting the Best System
Booster vs. Cascade vs. Secondary

SECONDARY

CASCADE

TRANSCRITICAL BOOSTER
CO₂ Booster Refrigeration System

Transcritical Compressors

- PRV Relief Valves 66 /135bar (957 / 1958psig)
- High Side Pressure 800 to 1740 psig
- Liquid Line Pressure 550 to 650 psig
- Medium Temp Suction Pressure 350 to 500 psig
- Low Temp Suction Pressures 175 to 250 psig
Gas Cooler Design

Alternatives for improving the system efficiency:
1. Evaporative Condenser: keeps system subcritical up to wet bulb temperature of 75F
2. Gas cooler with evaporative subcooling
CO$_2$ Booster Refrigeration System

High Pressure Controller Valve Combination

- Helps maintain sub cooling in condenser when in subcritical mode
- Create pressure drop into the flash tank
- Optimizes COP during transcritical operation.
- Emerson High Pressure Controller & “CX” Valve
CO$_2$ Booster Refrigeration System

With Parallel Compression

- Flash gas is compressed by a different compressor.
- Higher gas density of CO$_2$, results in smaller compressor displacement.
- 8% higher efficiency.
- Smaller Gas Cooler.
- By-pass valve remains to manage low load and low condensing conditions.
CO$_2$ Booster Refrigeration System

Complete Emerson Offering

Connectivity with

- Transcritical Compressors
- CoreSense Protection
- Compressor HSK VFD
- Condenser Fan HSK VFD
- High Pressure Controller & Valve
- Bypass Valve
- Case Controllers and EEV
- System Protectors
- MRLDS CO2 Leak Detectors
- Sub critical Scrolls
- Digital Enhanced Suction Control
- Ultra site floor plans via Surface Pro tablet
- Pro-Act Remote monitoring, enterprise services
Summary

• Global Regulations are causing end users to seriously look at their refrigerant options that best suits their company targets.

• Although Hydrocarbons and Ammonia have application challenges Vs HFC their uses continue to increase in specialized application.

• Cascade (sub critical CO$_2$) and secondary systems (liquid Recir) are usually used in high ambient areas such as southern Europe, the mid to southern USA and much of central and south America, Asia, Africa and Australia.

• Transcritical systems are usually used in areas where the ambient temperature is generally low (i.e. predominantly below 77F), such as northern Europe and Canada, and Northern US. New product development and system designs are allowing improved efficiency in warmer climates.

• Emerson is ready and fully committed to supporting Natural refrigerants.
Thank You!

Questions?

DISCLAIMER
Although all statements and information contained herein are believed to be accurate and reliable, they are presented without guarantee or warranty of any kind, expressed or implied. Information provided herein does not relieve the user from the responsibility of carrying out its own tests and experiments, and the user assumes all risks and liability for use of the information and results obtained. Statements or suggestions concerning the use of materials and processes are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe on any patents. The user should not assume that all toxicity data and safety measures are indicated herein or that other measures may not be required.