Scroll Compressors for Heat Pump Applications
ZH12K4E to ZH11M4E, ZH06KVE to ZH48KVE
About this guideline .. 1

1 Safety instructions ... 1
 1.1 Icon explanation ... 1
 1.2 Safety statements ... 1
 1.3 General instructions .. 2

2 Product description .. 3
 2.1 Common information about Copeland Scroll compressors ... 3
 2.2 Nomenclature .. 3
 2.3 Application range ... 4
 2.3.1 Qualified refrigerants and oils ... 4
 2.3.2 Application limits and operating envelopes ... 4
 2.3.3 Dimensions .. 5

3 Installation ... 7
 3.1 Compressor handling ... 7
 3.1.1 Transport and storage ... 7
 3.1.2 Positioning and securing ... 7
 3.1.3 Installation location ... 7
 3.1.4 Mounting parts ... 8
 3.2 Brazing procedure ... 8
 3.3 Accumulators .. 9
 3.4 Screens ... 10
 3.5 Mufflers ... 10
 3.6 Sound shell .. 10
 3.7 Reversing valves ... 10
 3.8 Sound and vibration ... 11

4 Electrical connection ... 12
 4.1 General recommendations ... 12
 4.2 Electrical installation ... 12
 4.2.1 Terminal box ... 14
 4.2.2 Motor windings .. 15
 4.2.3 Protection devices ... 15
 4.2.4 Crankcase heaters ... 15
 4.3 Pressure safety controls .. 15
 4.3.1 High-pressure protection .. 15
 4.3.2 Low-pressure protection ... 15
 4.4 Discharge gas temperature protection ... 16
 4.5 Motor protection ... 16
 4.6 Protector functional check and failure detection ... 17
 4.6.1 Checking the connection ... 17
 4.6.2 Checking the compressor thermistor chain ... 17
4.6.3 Checking the protection module .. 18
4.7 High-potential testing ... 18
5 Starting up & operation ... 19
 5.1 Strength pressure test ... 19
 5.2 Compressor tightness test ... 19
 5.3 Preliminary checks – Pre-starting .. 20
 5.4 Charging procedure .. 20
 5.5 Run-in time .. 20
 5.6 Initial start-up ... 20
 5.7 Rotation direction .. 21
 5.8 Starting sound .. 21
 5.9 Deep vacuum operation ... 21
 5.10 Shell temperature ... 21
 5.11 Pump down cycle ... 21
 5.12 Minimum run time .. 22
 5.13 Shut-off sound .. 22
 5.14 Supply frequency and voltage ... 22
 5.15 Oil level ... 22
6 Maintenance & repair ... 23
 6.1 Exchanging the refrigerant .. 23
 6.2 Replacing a compressor .. 23
 6.2.1 Compressor replacement .. 23
 6.2.2 Start-up of a new or replacement compressor 23
 6.3 Lubrication and oil removal .. 24
 6.4 Oil additives ... 24
 6.5 Unbrazing system components ... 25
7 Trouble shooting .. 26
8 Dismantling & disposal ... 30
9 References ... 30
DISCLAIMER .. 30
About this guideline

The purpose of this guideline is to provide guidance in the application of Copeland Scroll™ compressors in users’ systems. It is intended to answer the questions raised while designing, assembling and operating a system with these products.

Besides the support it provides, the instructions listed in this document are also critical for the proper and safe functioning of the compressors. Emerson cannot guarantee the performance and reliability of the product if it is misused in regard of this guideline.

1 Safety instructions

Copeland Scroll compressors are manufactured according to the latest European and US safety standards. Particular emphasis has been placed on the user’s safety.

These compressors are intended for installation in systems according to the EC Machinery directive. They may be put to service only if they have been installed in these systems according to instructions and conform to the corresponding provisions of legislation. For relevant standards please refer to the Manufacturers Declaration, available from our home page at www.emersonclimate.eu.

These instructions should be retained throughout the lifetime of the compressor.

You are strongly advised to follow these safety instructions.

1.1 Icon explanation

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This icon indicates instructions to avoid personal injury and material damage.</td>
</tr>
<tr>
<td></td>
<td>This icon indicates instructions to avoid property damage and possible personal injury.</td>
</tr>
<tr>
<td></td>
<td>This icon indicates operations with a danger of electric shock.</td>
</tr>
<tr>
<td></td>
<td>This icon indicates instructions to avoid malfunction of the compressor.</td>
</tr>
<tr>
<td></td>
<td>This icon indicates operations with a danger of burning or frostbite.</td>
</tr>
<tr>
<td></td>
<td>This word indicates a recommendation for easier operation.</td>
</tr>
<tr>
<td></td>
<td>This icon indicates operations with a danger of explosion.</td>
</tr>
</tbody>
</table>

1.2 Safety statements

- Refrigerant compressors must be employed only for their intended use.
- Only qualified and authorized HVAC or refrigeration personnel are permitted to install commission and maintain this equipment.
- Electrical connections must be made by qualified electrical personnel.
- All valid standards for connecting electrical and refrigeration equipment must be observed.
- The national legislation and regulations regarding personnel protection must be observed.

Use personal safety equipment. Safety goggles, gloves, protective clothing, safety boots and hard hats should be worn where necessary.
1.3 General instructions

WARNING
System breakdown! Personal injuries! Never install a system in the field and leave it unattended when it has no charge, a holding charge, or with the service valves closed without electrically locking out the system.

System breakdown! Personal injuries! Only approved refrigerants and refrigeration oils must be used.

WARNING
High shell temperature! Burning! Do not touch the compressor until it has cooled down. Ensure that other materials in the area of the compressor do not get in touch with it. Lock and mark accessible sections.

CAUTION
Overheating! Bearing damage! Do not operate compressors without refrigerant charge or without being connected to the system.

CAUTION
Contact with POE! Material damage! POE lubricant must be handled carefully and the proper protective equipment (gloves, eye protection, etc.) must be used at all times. POE must not come into contact with any surface or material that it might damage, including without limitation, certain polymers, eg, PVC/CPVC and polycarbonate.

IMPORTANT
Transit damage! Compressor malfunction! Use original packaging. Avoid collisions and tilting.
2 Product description

2.1 Common information about Copeland Scroll compressors

The Scroll compressor has been under development at Emerson Climate Technologies since 1979. It is the most efficient and durable compressor Emerson Climate Technologies has ever developed for air conditioning, refrigeration and heating applications.

This application guideline deals with all vertical single Copeland Scroll compressors for dedicated heat pump applications from ZH12K4E to ZH11M4E, and also includes vapour injection compressors from ZH06KVE to ZH48KVE.

<table>
<thead>
<tr>
<th>Compressor</th>
<th>Heating capacity kW</th>
<th>Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZH12K4E</td>
<td>3.68</td>
<td>PFZ</td>
</tr>
<tr>
<td>ZH18K4E</td>
<td>4.64</td>
<td>PFJ/TFD</td>
</tr>
<tr>
<td>ZH21K4E</td>
<td>6.50</td>
<td>PFJ/TFD/TFR</td>
</tr>
<tr>
<td>ZH26K4E</td>
<td>8.19</td>
<td>PFJ/TFD/TFR</td>
</tr>
<tr>
<td>ZH30K4E</td>
<td>9.45</td>
<td>PFJ/TFD/TFR</td>
</tr>
<tr>
<td>ZH38K4E</td>
<td>11.65</td>
<td>PFZ/TFD/TFR</td>
</tr>
<tr>
<td>ZH45K4E</td>
<td>13.95</td>
<td>TFD</td>
</tr>
<tr>
<td>ZH50K4E</td>
<td>17.40</td>
<td>TWD/TWR</td>
</tr>
<tr>
<td>ZH75K4E</td>
<td>24.20</td>
<td>TWD/TWR</td>
</tr>
<tr>
<td>ZH92K4E</td>
<td>30.70</td>
<td>TWD/TWR</td>
</tr>
<tr>
<td>ZH11M4E</td>
<td>37.00</td>
<td>TWD/TWR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compressor</th>
<th>Heating capacity kW</th>
<th>Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZH06KVE</td>
<td>6.07</td>
<td>TFM</td>
</tr>
<tr>
<td>ZH09KVE</td>
<td>8.22</td>
<td>TFD/PFZ</td>
</tr>
<tr>
<td>ZH13KVE</td>
<td>11.85</td>
<td>TFD/PFJ</td>
</tr>
<tr>
<td>ZH18KVE</td>
<td>16.7</td>
<td>TFD</td>
</tr>
<tr>
<td>ZH24KVE</td>
<td>21.3</td>
<td>TWD</td>
</tr>
<tr>
<td>ZH33KVE</td>
<td>29.5</td>
<td>TWD</td>
</tr>
<tr>
<td>ZH40KVE</td>
<td>37</td>
<td>TWD</td>
</tr>
<tr>
<td>ZH49KVE</td>
<td>44.7</td>
<td>TWD</td>
</tr>
</tbody>
</table>

Evaporating temperature: -7°C; Condensing temperature: 50°C; Suction gas superheat: 5K; Liquid sub-cooling: 4K

These compressors have one Scroll compression set driven by a single or three-phase induction motor. The Scroll set is mounted at the upper end of the rotor shaft of the motor. The rotor shaft axis is in the vertical plane.

2.2 Nomenclature

The model designation contains the following technical information about the standard and vapour injection compressors:

Z H 45K 4 E - TFD - 524

- Bill of material number
- Motor version
- Oil type: E = POE oil
- Model variation
- Nominal capacity R407C Dew Point
- Heat pump range
- Compressor family: Z = Scroll
2.3 Application range

2.3.1 Qualified refrigerants and oils

IMPORTANT
It is essential that the glide of refrigerant blends (primarily R407C) is carefully considered when adjusting pressure and superheat controls.

Oil recharge values can be taken from Copeland Scroll compressors brochures or Copeland™ brand products Selection Software.

<table>
<thead>
<tr>
<th>Compressors</th>
<th>ZH12K4E – ZH11M4E</th>
<th>ZH06KVE – ZH48KVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualified refrigerants</td>
<td>R407C, R134a</td>
<td>R407C</td>
</tr>
<tr>
<td>Copeland brand products standard oil</td>
<td>Emkarate RL 32 3MAF</td>
<td></td>
</tr>
<tr>
<td>Servicing oils</td>
<td>Emkarate RL 32 3MAF, Mobil EAL Arctic 22 CC</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Qualified refrigerants and oils

2.3.2 Application limits and operating envelopes

CAUTION
Inadequate lubrication! Compressor breakdown! Copeland Scroll compressors are qualified for operation inside the envelope published by Emerson Climate Technologies. The envelope is defined according to Emerson Climate Technologies testing and experience. Operating a compressor outside the envelope might lead to compressor failure which would be the heat pump manufacturer’s responsibility. The superheat at the compressor suction inlet must always be sufficient to ensure that no refrigerant droplets enter the compressor. For a typical evaporator-expansion valve configuration a minimum stable superheat of at least 5K is required. In the same way, the superheat at the compressor suction must always stay below a maximum limit specified by Emerson Climate Technologies, depending on the model and for which the operating envelope is defined.

NOTE: The application envelopes shown below are for R407C only. For other refrigerant application envelopes, please refer to Copeland brand products Selection Software found at www.emersonclimate.eu.

[ZH12K4E to ZH45K4E](#) to ZH11M4E

![Figure 1: R407C application envelopes for standard compressors ZH12K4E to ZH11M4E](#)
For air-to-water heat pump applications, a supplementary envelope extension may be required for high temperature water production in case of low outdoor temperature. This can be achieved by the use of wet vapour injection. For further information about wet vapour injection, contact the Application Engineering department at Emerson Climate Technologies.

NOTE: For information and design recommendations regarding vapour injection, please refer to Technical Information C7.4.3 “Vapour injection Scroll compressors for heat pumps”.

2.3.3 Dimensions

ZH06KVE

![Diagram of ZH06KVE dimensions]
3 Installation

3.1 Compressor handling

3.1.1 Transport and storage

WARNING
High pressure! Injury to skin and eyes possible! Be careful when opening connections on a pressurized item.

WARNING
Risk of collapse! Personal injuries! Move compressors only with appropriate mechanical or handling equipment according to weight. Keep in the upright position. Stack pallets on top of each other when not exceeding 300 kg. Do not stack single boxes on top of each other. Keep the packaging dry at all times.

![Diagram of storage and transport of compressors](image)

Figure 3

The compressor tilt angle should not be more than 30° during transport and handling. This will prevent oil from exiting through the suction stub. A tilt angle of maximum 45° is allowed for a very short time. Tilling the compressor more than 45° might affect its lubrication at start-up.

3.1.2 Positioning and securing

IMPORTANT
Handling damage! Compressor malfunction! Only use the lifting eyes whenever the compressor requires positioning. Using discharge or suction connections for lifting may cause damage or leaks.

The compressor should be kept vertical during handling.

The discharge connection plug should be removed first before pulling the suction connection plug to allow the dry air pressure inside the compressor to escape. Pulling the plugs in this sequence prevents oil mist from coating the suction tube making brazing difficult. The copper-coated steel suction tube should be cleaned before brazing.

The plugs must be removed as late as possible before brazing so that the air humidity does not affect the oil characteristics.

As oil might spill out of the suction connection located low on the shell, the suction connection plug must be left in place until the compressor is set into the unit.

No object, eg, a swaging tool should be inserted deeper than 51 mm into the suction tube or it might damage the suction screen and motor.

3.1.3 Installation location

Scroll compressors are capable of operating correctly in ambient air temperatures from -40°C to 60°C, ambient humidity from 30% to 95% and at altitudes up to 1000 meters.

Ensure the compressors are installed on a solid level base. For single compressor application, the compressor tilt angle during operation should not be more than 15° to allow adequate lubrication. For multiple compressor parallel configurations, the compressors must be positioned completely vertically on a totally horizontal surface or rail.
3.1.4 Mounting parts

The compressors are designed to be mounted on vibration absorber grommets. The grommets dampen the start-up surge of the compressor and minimise sound and vibration transmission to the compressor base during operation. The metal sleeve inside is a guide designed to hold the grommet in place. It is not designed as a load-bearing member, and application of excessive torque to the bolts can crush the sleeve. Its inner diameter is approximately 8.5 mm to fit, eg, an M8 screw. The mounting torque should be 13 ± 1 Nm. It is critically important that the grommet is not compressed.

If the compressors are mounted in tandem or used in parallel, then the hard mountings (bolt M9 5/16") are recommended. The mounting torque should be 27 ± 1 Nm. It is possible to deliver these hard mounting parts as a kit, or on request to deliver the compressor with these parts instead of the rubber grommets.

NOTE: For more information please refer to Technical Information C7.11.2 “Scroll Mounting Parts”.

Mounting parts ZH12K4E to ZH45K4E & ZH06KVE to ZH18KVE - Soft mountings

![Soft mounting parts](image1)

Mounting parts ZH56K4E to ZH11M4E & ZH24KVE to ZH48KVE - Soft mountings

![Soft mounting parts](image2)

Figure 4

3.2 Brazing procedure

IMPORTANT

Blockage! Compressor breakdown! Maintain a flow of oxygen-free nitrogen through the system at very low pressure during brazing. Nitrogen displaces the air and prevents the formation of copper oxides in the system. If allowed to form, the copper oxide material can later be swept through the system and block screens such as those protecting capillary tubes, thermal expansion valves, and accumulator oil return holes.

Contamination or moisture! Bearing failure! Do not remove the plugs until the compressor is set into the unit. This minimises any entry of contaminants and moisture.

Figure 5 shows the proper procedure for brazing the suction and discharge lines to a Scroll compressor.
The copper-coated steel tubes on Scroll compressors can be brazed in approximately the same manner as any copper tube.

Recommended brazing materials: any Silfos material is recommended, preferably with a minimum of 5% silver. However, 0% silver is acceptable.

Be sure tube fitting inner diameter and tube outer diameter are clean prior to assembly.

Using a double-tipped torch, apply heat in area 1.

As the tube approaches brazing temperature, move the torch flame to area 2.

Heat area 2 until braze temperature is attained, moving the torch up and down and rotating around the tube as necessary to heat the tube evenly. Add braze material to the joint while moving the torch around the joint to flow braze material around the circumference.

After the braze material flows around the joint, move the torch to heat area 3. This will draw the braze material down into the joint. The time spent heating area 3 should be minimal.

As with any brazed joint, overheating may be detrimental to the final result.

To disconnect:

Heat joint areas 2 and 3 slowly and uniformly until the braze material softens and the tube can be pulled out of the fitting.

To reconnect:

Recommended brazing materials: Silfos with minimum 5% silver or silver braze used on other compressors. Due to the different thermal properties of steel and copper, brazing procedures may have to be changed from those commonly used.

NOTE: Since the discharge stub contains a check valve, care must be taken not to overheat it to prevent brazing material from flowing into it.

3.3 Accumulators

CAUTION

Inadequate lubrication! Bearing and moving parts destruction! Minimise liquid refrigerant returning to the compressor. Too much refrigerant dilutes the oil. Liquid refrigerant can wash the oil off the bearings and moving parts leading to overheating and compressor failure.

Due to Copeland Scrolls inherent ability to handle liquid refrigerant in flooded start and defrost cycle operation, an accumulator is not required for durability in most systems. However, large volumes of liquid refrigerant repeatedly flooding back to the compressor during normal off cycles, or excessive liquid refrigerant flooding back during defrost or varying loads can dilute the oil, no matter what the system charge is. As a result, bearings and moving parts will be inadequately lubricated and wear may occur.

To determine if the accumulator can be removed, dedicated tests must be carried out to ensure that excessive liquid does not flood back to the compressor during defrost or varying loads. The defrost test must be done at an outdoor ambient temperature of around 0°C in a high relative humidity environment. Liquid flood back must be monitored during reversing valve operation, especially when coming out of defrost. Excessive flood back occurs when the sump temperature drops below the safe operation line shown in Figure 6.

![Figure 6: Dilution chart for transient operation (tb = bottom shell temp.; te = evaporating dew temp.)](image)

C6.2.9/0913-1013/E
If an accumulator must be used, the oil-return orifice should be from 1 to 1.4 mm in diameter for models ZH12K4E to ZH45K4E and ZH06KVE to ZH18KVE, and 2.0 mm for models ZH56K4E to ZH11M4E and ZH24KVE to ZH48KVE, depending on compressor size and compressor flood back results. To protect this small orifice from plugging with system debris a large-area protective screen no finer than 30 x 30 mesh (0.6 mm openings) is required. Tests have shown that a small screen with a fine mesh can easily become plugged causing oil starvation to the compressor bearings.

The size of the accumulator depends upon the operating range of the system and the amount of subcooling and subsequent head pressure allowed by the refrigerant control. System modelling indicates that heat pumps that operate down to and below -18°C will require an accumulator that can hold around 70% to 75% of the system charge.

3.4 Screens

CAUTION

Screen blocking! Compressor breakdown! Use screens with at least 0.6 mm openings.

The use of screens finer than 30 x 30 mesh (0.6 mm openings) anywhere in the system should be avoided with these compressors. Field experience has shown that finer mesh screens used to protect thermal expansion valves, capillary tubes or accumulators can become temporarily or permanently plugged with normal system debris and block the flow of either oil or refrigerant to the compressor. Such blockage can result in compressor failure.

3.5 Mufflers

External mufflers, normally applied to piston compressors in the past, may not be required for Copeland Scroll compressors.

Individual system tests should be performed to verify acceptability of sound performance. If adequate attenuation is not achieved, use a muffler with a larger cross-sectional area to inlet area ratio. A ratio of 20:1 to 30:1 is recommended.

A hollow shell muffler will work quite well. Locate the muffler at minimum 15 to maximum 45 cm from the compressor for the most effective operation. The farther the muffler is placed from the compressor within these ranges, the more effective. Choose a muffler with a length of 10 to 15 cm.

3.6 Sound shell

The sound power is an important criterion in the development of heating units. Information about the nominal sound power level and the rating conditions of all Copeland compressor models can be found in Copeland brand products Selection Software at www.emersonclimate.eu.

In order to lower the sound power of its compressors, Emerson Climate Technologies offers optional sound covers suitable for a large range of Scroll products.

The crankcase heater (if required by the refrigerant charge) must be placed inside the sound shell. Using an Emerson qualified crankcase heater within a sound shell has been tested and approved by Emerson Climate Technologies.

NOTE: For more information please refer to Technical Information C7.11.4 “Sound shell installation instructions for Scroll compressors”.

3.7 Reversing valves

Since Copeland Scroll compressors have a very high volumetric efficiency their displacements are lower than those of equivalent capacity reciprocating compressors. As a result, Emerson Climate Technologies recommends that the capacity rating on reversing valves be no more than 1.5 to 2 times the nominal capacity of the compressor in order to ensure proper operation of the reversing valve under all operating conditions.
The reversing valve solenoid should be wired so that the valve does not reverse when the system is shut off by the operating thermostat in the heating or cooling mode. If the valve is allowed to reverse at system shut off, suction and discharge pressures are reversed to the compressor. This results in a condition of system pressures equalising through the compressor which can cause the compressor to slowly rotate until the pressures equalise. This condition does not affect compressor durability but can cause unexpected sound after the compressor is turned off.

3.8 Sound and vibration

Proper pipe design must be taken into consideration when connecting a scroll compressor to a system.

A scroll compressor makes both a rocking and twisting motion and enough flexibility must be provided in the pipe-lines to allow starting, stopping and steady state running of the compressor without transmitting excessive stress into any line attached to the unit. In a split system, the most important goal is to ensure minimal vibration in all directions to avoid transmitting vibrations to the structure to which the lines are fastened.

Under some conditions, the Copeland Scroll has a normal starting rotational motion that can transmit a transient noise along the lines. This may be particularly pronounced in compressors using a three-phase motor due to their inherently higher starting torque. This phenomenon, like the one described previously, can easily be avoided by using standard line isolation techniques.

The sound level of a system is the result of design, quality and application. Scroll compressors sound power levels generally increase with the compressor model capacity and the condition pressure ratio.
4 Electrical connection

4.1 General recommendations

The compressor terminal box has a wiring diagram on the inside of its cover. Before connecting the compressor, ensure the supply voltage, the phases and the frequency match the nameplate data.

4.2 Electrical installation

Recommended wiring diagrams are shown in figures hereunder.

NOTE: We recommend the use of a contactor K2 for the safety chain in order to comply with EN 60335.

Single-phase (PF*) compressors:

For the ZH12K4E to ZH38K4E and the ZH09KVE, ZH13KVE ranges of compressors the following circuit diagrams can be used:

![Circuit diagrams](image)

Legend

- B1: System controller
- B3: Discharge gas thermostat
- C2: Run capacitor
- F1, F6: Fuses
- F3: HP switch
- F4: LP switch
- K1, K2: Contactors
- Q1: Main switch
- R2: Crankcase heater
- S1: Auxiliary switch
- Y5: Solenoid valve for injection (if available)
- RCD: Residual current device

Figure 8
Three-phase compressors (TF*) with internal motor protection:

For the ZH15K4E to ZH45K4E and the ZH06KVE to ZH18KVE ranges of compressors the following circuit diagrams can be used:

Power circuit

![Power circuit diagram](image1)

Control circuit

![Control circuit diagram](image2)

Three-phase compressors are connected to the T1, T2 and T3 connections

Motor terminal connections

![Motor terminal connections](image3)

Legend

- **B1** System controller
- **B3** Discharge gas thermostat
- **F1, F6, F8** Fuses
- **F3** HP switch
- **F4** LP switch
- **K1, K2** Contactors
- **Q1** Main switch
- **R2** Crankcase heater
- **S1** Auxiliary switch
- **Y5** Solenoid valve for injection (if available)
- **RCD** Residual current device

Figure 9
Three-phase compressors (TW*) with external motor protection INT69SC2:

For the ZH56K4E to ZH11M4E and the ZH24KVE to ZH48KVE ranges of compressors the following circuit diagrams can be used:

<table>
<thead>
<tr>
<th>Power circuit</th>
<th>Control circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Three-phase compressors are connected to the T1, T2 and T3 connections

Motor terminal connections

<table>
<thead>
<tr>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1Motor protection module</td>
</tr>
<tr>
<td>B1System controller</td>
</tr>
<tr>
<td>F1, F6, F8..Fuses</td>
</tr>
<tr>
<td>F3HP switch</td>
</tr>
<tr>
<td>F4LP switch</td>
</tr>
<tr>
<td>K1, K2Contactors</td>
</tr>
<tr>
<td>Q1Main switch</td>
</tr>
<tr>
<td>R2Crankcase heater</td>
</tr>
<tr>
<td>S1Auxiliary switch</td>
</tr>
<tr>
<td>Y5Solenoid valve for injection (if available)</td>
</tr>
<tr>
<td>RCDResidual current device</td>
</tr>
</tbody>
</table>

Figure 10

4.2.1 Terminal box

The terminal box is IP21 for all models without electronic motor protection, eg, TF*/PF*, and IP54 for all models with electronic motor protection, eg, TW*.

Maximum thickness of cable connectors for terminal box should be 1 mm for ZH30K4E to ZH45K4E and ZH13KVE to ZH18KVE compressors and 2 mm for ZH56K4E to ZH11M4E and ZH24KVE to ZH48KVE compressors (see Figure 11).

Figure 11
4.2.2 Motor windings

The ZH Scroll compressors are offered with either a single-phase or a three-phase induction motor, depending on the size. All three-phase motors are connected in star; single-phase motors need a run capacitor.

NOTE: For information about run and start capacitors, please refer to Technical Information C7.10.1 “Single Phase Scroll Compressor start assist components”.

The motor insulation material is class "B" (PF* and TF*) or "H" (TW*) for compressor models covered in this guideline (maximum allowable operating temperatures 130°C (class B), 180°C (class H) according to IEC 34-1 or DIN 57530).

NOTE: For information about electrical motors, please refer to Technical Information C7.9.1 “Motors for Copeland Scroll™ Compressors”.

4.2.3 Protection devices

Independently from the internal motor protection, fuses must be installed before the compressor. The selection of fuses has to be carried out according to VDE 0635, DIN 57635, IEC 269-1 or EN 60-269-1.

4.2.4 Crankcase heaters

IMPORTANT

Oil dilution! Bearing malfunction! Turn the crankcase heater on 12 hours before starting the compressor.

A crankcase heater is required when the system charge exceeds the compressor charge limits listed in Table 2.

<table>
<thead>
<tr>
<th>Compressor model</th>
<th>Refrigerant charge limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZH12K4E</td>
<td>2.7 kg</td>
</tr>
<tr>
<td>ZH15K4E to ZH26K4E / ZH06KVE to ZH09KVE</td>
<td>3.6 kg</td>
</tr>
<tr>
<td>ZH30K4E to ZH45K4E / ZH13KVE to ZH18KVE</td>
<td>4.5 kg</td>
</tr>
<tr>
<td>ZH56K4E to ZH11M4E / ZH24KVE to ZH48KVE</td>
<td>7.5 kg</td>
</tr>
</tbody>
</table>

Table 2

The crankcase heater must be mounted tight to the shell 40 mm above foot plate (see Figure 12).

NOTE: The crankcase heater must be turned on a minimum of 12 hours prior to starting the compressor and must remain energised during compressor off cycles.

4.3 Pressure safety controls

4.3.1 High-pressure protection

The high-pressure protection should be installed according to EN 378.

4.3.2 Low-pressure protection

IMPORTANT

Loss of system charge! Loss of lubrication! Bearing malfunction and compressor breakdown! A low-pressure control is highly recommended. Do not bridge or by-pass the low-pressure limiter.

Heat pumps in some geographical areas have to operate at low evaporating pressure because of the low ambient temperatures, sometimes combined with a high level of relative humidity. Good evaporator sizing and adequate defrost strategy control should prevent the system from
operating outside the Emerson Climate Technologies published operating envelope, whatever the climatic conditions and the heating demand.

However, in some extreme cases – such as loss of system charge, extreme heat transfer restriction at the evaporator, any defect or blocked flow control component (expansion valve, screens, etc.) – the evaporating conditions may be such that the compressor tends to operate outside the Emerson Climate Technologies operating envelope limits. All those conditions may result in compressor failure.

Therefore, Emerson Climate Technologies strongly recommends the installation of a low pressure protection in the suction line to stop the compressor when it operates outside the published envelope limits.

4.4 Discharge gas temperature protection

IMPORTANT

Inadequate lubrication! Scroll set damage! Compressors ZH12K4E to ZH45K4E and ZH06KVE to ZH18KVE must be equipped with an external discharge gas temperature protection.

A good system control should prevent the system from operating outside the published operating envelope and acceptable superheat range, whatever the climatic conditions and the heating demand. However, under some extreme operating conditions (such as loss of charge or improper control operation), the internal discharge gas temperature reached can cause compressor damage. In order to guarantee positive compressor protection, discharge gas temperature protection is required for any application with Copeland brand compressors. This protection must not be used as an operating envelope controller but as a safety device.

For compressors ZH56K4E to ZH11M4E and ZH24KVE to ZH48KVE, an internal discharge gas temperature protector is included with the compressor standard delivery. A thermistor is located in the discharge port of the fixed scroll. Excessive discharge gas temperature will cause the electronic protector module to trip. The discharge gas thermistor is wired in series with the motor thermistor chain.

ZH12K4E to ZH45K4E and ZH06KVE to ZH18KVE Scroll compressors have no internal discharge gas temperature protection. For these models, an external discharge gas temperature protector must be installed.

The maximum discharge gas temperature is 140°C for compressors ZH12K4E to ZH45K4E and 130°C for compressors ZH06KVE to ZH18KVE.

![Figure 13: Internal discharge gas temperature sensor position for models ZH56K4E to ZH11M4E and ZH24KVE to ZH48KVE](image)

NOTE: For more information please refer to Technical Information C7.8.6 “Discharge Temperature Protection”.

4.5 Motor protection

For the ZH12K4E to ZH45K4E and the ZH06KVE to ZH18KVE ranges of compressors, conventional inherent internal line break motor protection is provided.

The electronic motor protection system used in all ZH56K4E to ZH11M4E and ZH24KVE to ZH48KVE models is identified by a “W” as the centre letter in the motor code. This system utilizes the temperature-dependent resistance of the thermistors (also called PTC-resistance) to read the winding temperature. A chain of four thermistors connected in series is embedded in the motor windings so that the temperature of the thermistors can follow the winding temperature.
with little inertia. An electronic module INT69SC2 is required to process the resistance values and trip a control depending on the thermistor resistance.

Protection module specifications

Type: .. Kriwan INT69SC2
Voltage: .. 115/120 V AC; 230/240 V AC – 50/60 Hz
Normal PTC resistance: <1.8 kΩ
Trip resistance: >4.50 kΩ ± 20%
Reset resistance: <2.75 kΩ ± 20%
Module time out: 30 min ± 5 min for ZH56K4E to ZH92K4E & ZH24KVE
.. to ZH40KVE
.. 60 min ± 5 min for ZH11M4E & ZH48KVE
Reset of running time: Power interruption / mains failure approx. 5 seconds
Phase monitor: No
Ambient temperature range: -30°C…+70°C

Module

For protection in case of blocked rotor one thermistor for each phase is embedded in the winding heads on the upper (suction gas) side of the compressor motor. A fourth thermistor is located in a winding head at the lower end of the motor. A fifth sensor is located in the discharge port of the fixed scroll to control discharge-gas superheat. The entire chain is internally led to the fusite from where it is connected to the module connections S1 and S2. When any resistance of the thermistor chain reaches the tripping value, the module interrupts the control line and causes the compressor to switch off. After the thermistor has cooled sufficiently, its resistance drops to the reset value but the module itself resets after module time out then restarts the compressor.

4.6 Protector functional check and failure detection

WARNING

Conductor cables! Electrical shock! Shut off power supply before and between each test.

Prior to start-up of the fully connected compressor a functional check shall be carried out:

- Disconnect one terminal either S1 or S2 of the protection module. If the compressor is now switched on, the motor should not start (simulation of an open thermistor chain).
- Reconnect the disconnected thermistor line. If the compressor is now switched on, the motor must start.

If the motor does not start up during the functional check, this indicates a disturbance in operation. The following steps should be followed:

4.6.1 Checking the connection

- Check the connection of the thermistor leads in the terminal box and at the protection module for possible loose connections or cable breakage.

If there is neither loose connection nor cable breakage the resistance of the thermistor chain must be checked.

4.6.2 Checking the compressor thermistor chain

Caution: Use maximum measuring voltage of 3V!

The thermistor leads at terminals S1 and S2 of the module shall be disconnected and the resistance measured between the leads. The resistance must be between 150 Ω and 1250 Ω.
If the thermistor chain has a higher resistance (2750 Ω or higher), the motor temperature is still too high and it must be allowed to cool. Then measure again.

If the resistance is below 30 Ω, the compressor has to be exchanged due to shorted sensor circuit.

An infinite value indicates an open sensor circuit and the compressor has to be replaced.

If no defect is detected in the thermistor chain the module must be checked.

4.6.3 Checking the protection module

The control connections at M1 and M2 have to be removed and the switching conditions must be checked by an ohmmeter or signal buzzer:

- Simulation of a short circuit in the thermistor chain (0 Ω): Bridge the already disconnected thermistor terminals S1 and S2 and switch on the voltage supply; the relay must switch on then off again after a short period; connection established then interrupted between terminals M1 and M2.
- Simulation of an open thermistor chain (∞ Ω): Remove the jumper used for the short-circuit simulation and switch on the voltage supply; the relay remains switched off; no connection between terminals M1 and M2.

If one of the above conditions is not met, the module is defective and has to be exchanged.

NOTE: The function of the module should be tested each time the fuse in the control circuit breaks the power supply. This ensures the contacts did not stick.

4.7 High-potential testing

WARNING
Conductor cables! Electrical shock! Shut off power supply before high-potential testing.

CAUTION
Internal arcing! Motor destruction! Do not carry out high-voltage or insulation tests if the compressor housing is under vacuum.

Emerson Climate Technologies subjects all Scroll compressors to a high-voltage test after final assembly. Each motor phase winding is tested, according to EN 0530 or VDE 0530 part 1, at a differential voltage of 1000V plus twice the nominal voltage. Since high-voltage tests lead to premature ageing of the winding insulation further additional tests of that nature are not recommended.

If it has to be done for any reason, a lower voltage must be used. Disconnect all electronic devices, eg, motor protection module, fan speed control, etc prior to testing.
5 Starting up & operation

WARNING
Diesel effect! Compressor destruction! The mixture of air and oil at high temperature can lead to an explosion. Avoid operating with air.

IMPORTANT
Oil dilution! Bearing malfunction! Turn the crankcase heater on 12 hours before starting the compressor.

5.1 Strength pressure test

WARNING
High pressure! Personal injuries! Consider personal safety requirements and refer to test pressures prior to test.

WARNING
System explosion! Personal injuries! DO NOT USE other industrial gases.

CAUTION
System contamination! Bearing malfunction! Use only dry nitrogen for pressure testing.

The compressor has been strength-tested in the Emerson Climate Technologies factory. As the compressor complies with EN 60335-2-34, it is not necessary for the customer to strength-test the compressor.

Since it is not possible to isolate the compressor from the rest of the system, system strength pressure testing according to EN 378-2 should be carried out in two steps at two different test pressures, the high-side test pressure HPT and the low-side test pressure LPT:

- First, apply for a short time the HPT in the high pressure section of the system up to the compressor discharge stub. The compressor check valve automatically closes to isolate the low pressure side. During that test, make sure that the low pressure side of the system does not exceed the compressor maximum standstill pressure, i.e. the compressor low side PS.
- Then, test the low pressure section of the system by applying the LPT not exceeding the low side PS.

NOTE: For more information please refer to Technical Information CC7.4.1 “Pressure equipment directive applied to Copeland brand products”.

5.2 Compressor tightness test

WARNING
High pressure! Personal injuries! Consider personal safety requirements and refer to test pressures prior to test.

WARNING
System explosion! Personal injuries! DO NOT USE other industrial gases.

CAUTION
System contamination! Bearing malfunction! Use only dry nitrogen or helium for leak testing.

The compressor has been leak-tested in the Emerson Climate Technologies factory. As the compressor complies with EN 60335-2-34, it is not necessary for the customer to leak-test the compressor.

If using dry air do not include the compressor in the leak test – isolate it first. Never add refrigerant to the test gas (as leak indicator).
5.3 Preliminary checks – Pre-starting

Discuss details of the installation with the installer. If possible, obtain drawings, wiring diagrams, etc.

It is ideal to use a check-list but always check the following:

- Visual check of the electrics, wiring, fuses etc
- Visual check of the plant for leaks, loose fittings such as TXV bulbs etc
- Compressor oil level
- Calibration of HP & LP switches and any pressure actuated valves
- Check setting and operation of all safety features and protection devices
- All valves in the correct running position
- Pressure and compound gauges fitted
- Correctly charged with refrigerant
- Compressor electrical isolator location & position

5.4 Charging procedure

CAUTION
Low suction pressure operation! Compressor damage! Do not operate with a restricted suction. Do not operate with the low-pressure limiter bridged. Do not operate compressor at pressures that are not allowed by the operating envelope. Allowing the suction pressure to drop below the envelope limit for more than a few seconds may overheat scrolls and cause early drive bearing and moving parts damage.

The system should be liquid-charged through the liquid-receiver shut-off valve or through a valve in the liquid line. The use of a filter drier in the charging line is highly recommended. Since R407C is a blend and scrolls have discharge check valves, systems should be liquid-charged on both the high and low sides simultaneously to ensure a positive refrigerant pressure is present in the compressor before it runs. The majority of the charge should be placed in the high side of the system to prevent bearing washout during first-time start on the assembly line.

5.5 Run-in time

Scroll compressors exhibit a slight decrease in input power during the initial running period. Published performance ratings are based on calorimeter testing which is carried out after run-in. Therefore users should be aware that before the performance specified by EN 12900 is achieved the compressor needs to be run in. Typical run-in times required for ZH compressors to attain the published performance are 16 hours at the saturation dew evaporating and condensing temperatures condition -7/50°C with a superheat of 10K.

5.6 Initial start-up

CAUTION
Oil dilution! Bearing malfunction! It is important to ensure that new compressors are not subjected to liquid abuse. Turn the crankcase heater on 12 hours before starting the compressor.

CAUTION
High discharge pressure operation! Compressor damage! Do not use compressor to test opening set point of high-pressure limit. Bearings and moving parts are susceptible to damage before they have had several hours of normal running in.

Liquid and high pressure loads could be detrimental to new bearings. It is therefore important to ensure that new compressors are not subjected to liquid abuse and high-pressure run tests. It is not good practice to use the compressor to test the high-pressure switch function on the production line. Switch function can be tested with nitrogen prior to installation and wiring can be checked by disconnecting the high-pressure switch during the run test.
5.7 Rotation direction

Scroll compressors, like several other types of compressors, will only compress in one rotational direction. Direction of rotation is not an issue with single-phase compressors since they will always start and run in the proper direction. Three-phase compressors will rotate in either direction depending upon phasing of the power. Since there is a 50-50 chance of connecting power in such a way as to cause rotation in the reverse direction, it is important to include notices and instructions in appropriate locations on the equipment to ensure proper rotation direction when the system is installed and operated.

Observing that suction pressure drops and discharge pressure rises when the compressor is energized allows verification of proper rotation direction. There is no negative impact on durability caused by operating three-phase Copeland Scroll compressors in the reversed direction for a short period of time (under one hour) but oil may be lost. Oil loss can be prevented during reverse rotation if the tubing is routed at least 15 cm above the compressor. After several minutes of operation in reverse, the compressor protection system will trip due to high motor temperature. The operator will notice a lack of cooling or heating. However, if allowed to repeatedly restart and run in reverse without correcting the situation, the compressor will be permanently damaged.

All three-phase scroll compressors are identically wired internally. Therefore, once the correct phasing is determined for a specific system or installation, connecting properly phased power leads to the identified compressor terminals will ensure proper rotation direction.

5.8 Starting sound

During the very brief start-up, a clicking sound is audible, resulting from initial contacting of the spirals and is normal. Due to the design of the Copeland Scroll compressors, the internal compression components always start unloaded even if system pressures are not balanced. In addition, since internal compressor pressures are always balanced at start-up, low-voltage starting characteristics are excellent for Copeland Scroll compressors.

5.9 Deep vacuum operation

CAUTION

Vacuum operation! Compressor damage! Copeland Scroll compressors should never be used to evacuate heat pump systems.

The scroll compressor can be used to pump down refrigerant in a unit as long as the pressures remain within the operating envelope. Low suction pressures will result in overheating of the scrolls and permanent damage to the compressor drive bearing and moving parts.

5.10 Shell temperature

The top shell and discharge line can briefly but repeatedly reach temperatures above 177°C if the compressor cycles on its internal protection devices. This only happens under rare circumstances and can be caused by the failure of system components such as the condenser or evaporator fan or loss of charge and depends upon the type of expansion control. Care must be taken to ensure that wiring or other materials that could be damaged by these temperatures do not come in contact with the shell.

5.11 Pump down cycle

A pump down cycle for control of refrigerant migration may be used in conjunction with a crankcase heater when the compressor is located so that cold air blowing over the compressor makes the crankcase heater ineffective.

If a pump down cycle is used, a separate external check valve must be added. The scroll discharge check valve is designed to stop extended reverse rotation and prevent high-pressure gas from leaking rapidly into the low side after shut-off. The check valve will in some cases leak more than reciprocating compressor discharge reeds, normally used with pump down, causing the scroll compressor to recycle more frequently. Repeated short-cycling of this nature can result in a low oil situation and consequent damage to the compressor. The low-pressure control differential has to be reviewed since a relatively large volume of gas will re-expand from the high side of the compressor into the low side after shutdown.
For pressure control setting, never set the low-pressure control to shut off outside of the operating envelope. To prevent the compressor from running into problems during such faults as loss of charge or partial blockage, the control should not be set lower than the minimum suction pressure allowed by the operating envelope.

5.12 Minimum run time

Emerson Climate Technologies recommends a maximum of 10 starts per hour. There is no minimum off time because scroll compressors start unloaded, even if the system has unbalanced pressures. The most critical consideration is the minimum run time required to return oil to the compressor after start-up. To establish the minimum run time obtain a sample compressor equipped with a sight tube (available from Emerson Climate Technologies) and install it in a system with the longest connecting lines that are approved for the system. The minimum on time becomes the time required for oil lost during compressor start-up to return to the compressor sump and restore a minimal oil level that will ensure oil pick-up through the crankshaft. Cycling the compressor for a shorter period than this, for instance to maintain very tight temperature control, will result in progressive loss of oil and damage to the compressor.

5.13 Shut-off sound

Scroll compressors incorporate a device that minimizes reverse rotation. The residual momentary reversal of the scrolls at shut off will cause a clicking sound, but it is entirely normal and has no effect on compressor durability.

5.14 Supply frequency and voltage

There is no general release of standard Copeland Scroll™ compressors for use with variable speed AC drives. There are numerous issues that must be considered when applying Scroll compressors with variable speed, including system design, inverter selection, and operating envelopes at various conditions.

The last digit of the model motor code indicates which frequency and voltage must be applied - see Section 2.2 “Nomenclature”. Availability of codes per compressor model can be checked in Section 2.1.

<table>
<thead>
<tr>
<th>50 Hz</th>
<th>60 Hz</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>380-420-3 ph</td>
<td>460-3 ph</td>
<td>D</td>
</tr>
<tr>
<td>220-240-1 ph</td>
<td>265-1 ph</td>
<td>J</td>
</tr>
<tr>
<td>380-420-3 ph</td>
<td>----</td>
<td>M</td>
</tr>
<tr>
<td>220-240-3 ph</td>
<td>----</td>
<td>R</td>
</tr>
<tr>
<td>220-240-1 ph</td>
<td>----</td>
<td>Z</td>
</tr>
<tr>
<td>200-220-3 ph</td>
<td>200-230-3 ph</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 3: Typical ZH models electrical codes

For models allowing operation at 50 or 60 Hz (codes D, J and 5), only frequencies from 50 to 60 Hz are acceptable. Operation outside this frequency range is possible but should not be done without specific Application Engineering review. The voltage must vary proportionally to the frequency.

If the inverter can only deliver a maximum voltage of 400V, the amps will increase when the speed is above 50 Hz, and this may give rise to nuisance tripping if operation is near the maximum power limit and/or compressor discharge gas temperature limit.

5.15 Oil level

Compressor models ZH56K4E to ZH11M4E and ZH24KVE to ZH48KVE are equipped with an oil sight glass. In these models the oil level should be maintained at mid-point of the sight glass. If an oil regulator is used the level should be set within the top half of the sight glass.

During the system development phase, adequate oil return in any operation should be checked whatever the compressor model. For this purpose, sample compressors equipped with sight tubes can be ordered from Emerson Climate Technologies. Oil return check test recommendations are also available on request from Application Engineering.
6 Maintenance & repair

6.1 Exchanging the refrigerant

Qualified refrigerants and oils are given in section 2.3.1.

It is not necessary to replace the refrigerant with new unless contamination due to an error such as topping up the system with an incorrect refrigerant is suspected. To verify correct refrigerant composition, a sample can be taken for chemical analysis. A check can be made during shut down by comparing the refrigerant temperature and pressure using precision measurements at a location in the system where liquid and vapour phases are present and when the temperatures have stabilised.

In the event that the refrigerant needs replacing, the charge should be recovered using a suitable recovery unit.

6.2 Replacing a compressor

CAUTION
Inadequate lubrication! Bearing destruction! Exchange the accumulator after replacing a compressor with a burned out motor. The accumulator oil return orifice or screen may be plugged with debris or may become plugged. This will result in starvation of oil to the new compressor and a second failure.

6.2.1 Compressor replacement

In the case of a motor burnout, the majority of contaminated oil will be removed with the compressor. The rest of the oil is cleaned through the use of suction and liquid line filter driers. A 100% activated alumina suction line filter drier is recommended but must be removed after 72 hours.

It is highly recommended that the suction accumulator be replaced if the system contains one. This is because the accumulator oil return orifice or screen may be plugged with debris or may become plugged shortly after a compressor failure. This will result in starvation of oil to the replacement compressor and a second failure. When a single compressor or tandem is exchanged in the field, it is possible that a major portion of the oil may still be in the system.

While this may not affect the reliability of the replacement compressor, the extra oil will add to rotor drag and increase power usage.

6.2.2 Start-up of a new or replacement compressor

Rapid charging only on the suction side of a scroll-equipped system or condensing unit can occasionally result in a temporary no start condition for the compressor. The reason for this is that, if the flanks of the compressor happen to be in a sealed position, rapid pressurisation of the low side without opposing high-side pressure can cause the scrolls to seal axially. As a result, until the pressures eventually equalise, the scrolls can be held tightly together preventing rotation. The best way to avoid this situation is to charge on both the high and low sides simultaneously at a rate which does not result in axial loading of the scrolls.

A minimum suction pressure specified in the published operating envelope must be maintained during charging. Allowing the suction pressure to drop below that value may overheat the scrolls and cause early drive bearing and moving parts damage. Never install a system in the field and leave it unattended when it has no charge, a holding charge, or with the service valves closed without securely electrically locking out the system. This will prevent unauthorised personnel from accidentally operating the system and potentially ruining the compressor by operating with no refrigerant flow. Do not start the compressor while the system is in a deep vacuum. Internal arcing may occur when a Scroll compressor is started in a vacuum causing burnout of the internal lead connections.
6.3 Lubrication and oil removal

CAUTION
Chemical reaction! Compressor destruction! Do not mix up ester oils with mineral oil and/or alkyl benzene when used with chlorine-free (HFC) refrigerants.

The compressor is supplied with an initial oil charge. The standard oil charge for use with refrigerants R407C / R134a is a polyolester (POE) lubricant Emkarate RL 32-3MAF. In the field the oil level could be topped up with Mobil EAL Arctic 22 CC if 3MAF is not available. See nameplate for original oil charge shown in litres. A field recharge is from 0.05 to 0.1 litre less.

One disadvantage of POE is that it is far more hygroscopic than mineral oil (see Figure 15). Only brief exposure to ambient air is needed for POE to absorb sufficient moisture to make it unacceptable for use in a refrigeration system. Since POE holds moisture more readily than mineral oil it is more difficult to remove it through the use of vacuum. Compressors supplied by Emerson Climate Technologies contain oil with low moisture content, and may rise during the system assembling process. Therefore it is recommended that a properly sized filter-drier is installed in all POE systems. This will maintain the moisture level in the oil to less than 50 ppm. If oil is charged into a system, it is recommended to use POE with moisture content no higher than 50 ppm.

![Figure 15: Absorption of moisture in ester oil in comparison to mineral oil in ppm by weight at 25°C and 50% relative humidity (h=hours)](image)

If the moisture content of the oil in a refrigeration system reaches unacceptably high levels, corrosion and copper plating may occur. The system should be evacuated down to 0.3 mbar or lower. If there is uncertainty as to the moisture content in the system, an oil sample should be taken and tested for moisture. Sight glass/moisture indicators currently available can be used with the HFC refrigerants and lubricants; however, the moisture indicator will just show the moisture contents of the refrigerant. The actual moisture level of POE would be higher than the sight glass indicates. This is due to the high hygroscopicity of the POE oil. To determine the actual moisture content of the lubricant, samples have to be taken from the system and analysed.

6.4 Oil additives

Although Emerson Climate Technologies cannot comment on any specific product, from our own testing and past experience, we do not recommend the use of any additives to reduce compressor bearing losses or for any other purpose. Furthermore, the long term chemical stability of any additive in the presence of refrigerant, low and high temperatures, and materials commonly found in refrigeration systems is complex and difficult to evaluate without rigorously controlled chemical laboratory testing. The use of additives without adequate testing may result in malfunction or premature failure of components in the system and, in specific cases, in voiding the warranty on the component.
6.5 Unbrazing system components

WARNING

Explosive flame! Burning! Oil-refrigerant mixtures are highly flammable. Remove all refrigerant before opening the system. Avoid working with an unshielded flame in a refrigerant charged system.

Before opening up a system it is important to remove all refrigerant from both the high and low sides of the system. If the refrigerant charge is removed from a scroll-equipped unit from the high side only, it is possible for the scrolls to seal, preventing pressure equalization through the compressor. This may leave the low side shell and suction line tubing pressurized. If a brazing torch is then applied to the low side while the low side shell and suction line contain pressure, the pressurized refrigerant and oil mixture could ignite when it escapes and contacts the brazing flame. To prevent this occurrence, it is important to check both the high and low sides with manifold gauges before unbrazing. Instructions should be provided in appropriate product literature and assembly (line repair) areas. If compressor removal is required, the compressor should be cut out of system rather than unbrazed.
7 Trouble shooting

Most in-warranty electrical failures are a result of mechanical problems (particles in the oil, liquid refrigerant in the oil, etc.) and most mechanical problems are a result of system problems. Unless the reason for the failure is found, replacing the compressor will probably lead to another compressor failure.

If the compressor fails to start and run properly, it is important that the compressor has been tested to determine its condition. It is possible that electrical components may be defective, the protector may be open, or a safety device may be tripped. Here is a look into the most common problems encountered for the compressors in the field.

WARNING

Electrical cables! Electrical shock! Before attempting any electrical trouble-shooting, make sure all grounds are connected and secure and there is ground continuity throughout the compressor system. Also ensure the compressor system is correctly grounded to the power supply. If you are not a qualified service person familiar with electrical troubleshooting techniques, DO NOT PROCEED until a qualified service person is available.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wired incorrectly</td>
<td>Check the power supply on the compressor terminals if there is voltage measured. Trace the wiring diagram to see where the circuit is interrupted.</td>
<td></td>
</tr>
<tr>
<td>Low supply voltage</td>
<td>If the voltage falls below 90% of the nameplate voltage, the motor may develop insufficient torque. Make sure the compressor is supplied with rated nominal voltage.</td>
<td></td>
</tr>
<tr>
<td>Defective capacitor or relay</td>
<td>For a single-phase motor, a defective capacitor or relay may prevent the compressor from starting. Check these components by substituting “a known-to-be-good” component if available. Make sure that the capacitors are electrically discharged before checking.</td>
<td></td>
</tr>
<tr>
<td>Shorted or grounded motor windings</td>
<td>Check the motor for ground by means of a continuity check between the terminals. If grounded replace compressor.</td>
<td></td>
</tr>
<tr>
<td>The Scroll compressor does not run, instead a buzz sound can be heard</td>
<td>Refrigeration migration: When the compressor is switched off for a long period refrigerant can condense in the crankcase. If the compressor body is colder than the evaporator, refrigerant will move from the evaporator to the compressor crankcase. Refrigerant migration normally occurs when the compressor is installed in a cold area. A crankcase heater and/or a pump down cycle provide good protection against refrigerant migration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acid formation: Acid forms in the presence of moisture, oxygen, metal, salts, metal oxides and/or high discharge temperatures. The chemical reactions are accelerated at higher temperatures. Oil and acid react with each other. Acid formation leads to damage of the moving parts and in extreme cases to motor burnout. Several different test methods can be used to test for acid formation. If acid is present a complete oil change (including the oil in the oil separator) will help. A suction filter which removes acid should also be fitted. Check filter-drier condition.</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Cause</td>
<td>Corrective action</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>The Scroll compressor does not run, no buzz sound can be heard</td>
<td>Compressor motor protector open</td>
<td>Check if there is continuity on the compressor external protector. If the compressor is warm, it may require considerable time to cool down. For compressors with an external module using INT69SCY2 (TW-code) which trip on phase loss a delay of 5 minutes is activated. If all three phases are present then the compressor will continue to run, if not the module will lock out. After 10 attempts to restart the compressor, the module will lock out, which could be reset by reestablishing incoming power to the module.</td>
</tr>
<tr>
<td>Defective system control components</td>
<td>Check if the pressure control or thermostat works properly or if the controls are open.</td>
<td></td>
</tr>
<tr>
<td>Power circuit open</td>
<td>Check the fuse for a tripped circuit breaker or for an open disconnected switch.</td>
<td></td>
</tr>
<tr>
<td>Burned motor winding</td>
<td>▪ If motor burned is due to undersized contactors, this is observed when the contacts welded together. Complete motor burnout on all three phases despite the presence of a functioning protection system can be the result. For sizing information please consult with Contactor manufacturer data sheet. If the application of the compressor is changed the contactor sizing should be rechecked.</td>
<td></td>
</tr>
<tr>
<td>▪ Check for unbalanced voltage.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| The Scroll compressor trips on motor protection | High discharge pressure / suction pressure | ▪ For high discharge pressure:
 - Check for system leaks.
 - Check the system design. Make sure the discharge line is correctly sized: undersized discharge line can increase discharge pressure. This is also true for an undersized condenser. Correct the component selection as needed.
 - Check the fan motor, make sure it is running properly in the right direction. Check the condenser: if dirt has been accumulated it will clog the airflow; clean as necessary. High discharge pressure is also caused by an overcharged system and high ambient temperature surrounding the condenser.
 ▪ For high suction pressure, check the “evaporator superheat” first to diagnose the problem:
 - High superheat at the evaporator outlet: this is likely in case of excessive pressure-drop in the liquid line or too much vertical lift on the pipe work.
 - Low superheat at the evaporator outlet is characterized by oversized selection of the expansion valve or incorrect bulb sensor mounting. The valve may freeze up in the open position due to accumulation of debris in the system. For a system with very short refrigeration lines an accumulator is recommended. |
<p>| Compressor operating outside the design limits | Check the compressor suction and discharge pressures while it is running. Make sure they are within the operating envelope. |</p>
<table>
<thead>
<tr>
<th>Condition</th>
<th>Cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defective motor protector</td>
<td>If all operating conditions are normal, the voltage supply at the compressor terminals is balanced and within limits, the compressor crankcase temperature is within normal limits, and the amperage drawn is within the specified range, the motor protector may be defective.</td>
<td></td>
</tr>
<tr>
<td>Excessive discharge temperature</td>
<td>Insufficient cooling medium injected</td>
<td>For compressors using vapour injection, make sure the expansion valve is connected at a distance between 150 mm and 200 mm from the economizer inlet and at a position not lower than inlet connection. The injection line economizer to compressor should be properly sized to avoid pressure drop. For good refrigerant distribution in the economizer respect the recommendations especially those regarding the inlet pipes for the vapour injection according to BHE-manufacturer. The liquid line from the BHE to the expansion valve(s) need to be well insulated as well. A solenoid valve should be installed on the liquid line to prevent refrigerant migration.</td>
</tr>
<tr>
<td>Excessive discharge temperature</td>
<td>Too high compressor superheat</td>
<td>Make sure the compressor operates within the acceptable superheat range published by Emerson.</td>
</tr>
<tr>
<td>The Scroll compressor runs continuously</td>
<td>Excessive cooling/heating load or inadequate insulation</td>
<td>Check the load design; make sure that proper insulation is applied. Correct it as necessary.</td>
</tr>
<tr>
<td>The Scroll compressor runs continuously</td>
<td>Control circuit inoperative</td>
<td>Check the thermostat, measure the temperature of the room and compare with the thermostat; replace or re-calibrate the thermostat. Check the LP control switch and replace it if it is found defective.</td>
</tr>
<tr>
<td>Compressor lubrication problem</td>
<td>Oil trap due to incorrect piping layout / sizing</td>
<td>Check the piping layout design. Installations of pipe being routed over or around obstacles can inadvertently create unwanted traps for the oil return. As much as possible the refrigerant line should travel a direct and straight course between the evaporator and compressor. It should also be remembered that the entire system will be coated in oil to some extent. Oil viscosity changes with temperature. More oil stays in the system than was originally expected. Make sure the line is correctly sized.</td>
</tr>
<tr>
<td>Compressor lubrication problem</td>
<td>Oil pump out due to high cycling rate</td>
<td>A high cycling rate will pump oil into the system and lead to lubrication failure. Oil leaves the compressor at start-up and the short running time is insufficient to return the oil to the compressor via the suction side. Try to limit the number of cycles to maximum 10 per hour.</td>
</tr>
<tr>
<td>Compressor lubrication problem</td>
<td>Low gas velocity</td>
<td>System gas velocity changes depending on temperature and load (capacity control). In low load conditions gas velocity may not be high enough to return oil to the compressor.</td>
</tr>
<tr>
<td>Low discharge pressure</td>
<td>Low ambient temperature</td>
<td>Fit a fan cycling control system.</td>
</tr>
<tr>
<td>Low discharge pressure</td>
<td>Refrigerant undercharge</td>
<td>Check the system for leaks. Observe sight glass for bubbles. Add refrigerant until the sight glass is clear.</td>
</tr>
<tr>
<td>Condition</td>
<td>Cause</td>
<td>Corrective action</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Low suction</td>
<td>System design load too small</td>
<td>If the compressor is running in a tandem or in parallel, modulate the running process.</td>
</tr>
<tr>
<td>pressure</td>
<td>Inadequate refrigerant going to the evaporator</td>
<td>Lower normal discharge pressure values can lead to insufficient refrigerant flow to the system. This can also be verified by checking the evaporator outlet superheat, if it is found unusually high. Check the selection of the expansion valve (likely undersized).</td>
</tr>
<tr>
<td>Noise during shut</td>
<td>Anti-reverse device</td>
<td>This does not have any effect on the durability of the compressor, no action is necessary.</td>
</tr>
<tr>
<td>off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 Dismantling & disposal

Removing oil and refrigerant:
Do not disperse in the environment.
Use the correct equipment and method of removal.
Dispose of oil and refrigerant properly.
Dispose of compressor properly.

9 References

Please visit http://www.emersonclimate.com/europe/en-eu/resources for free download of the latest update of these application guidelines and for the documents listed below.

Additional technical information:
http://www.emersonclimate.com/europe/en-eu/Resources/Product_Literature/Pages/default.aspx
- CC7.4.1 “Pressure equipment directive applied to Copeland® brand products”
- C7.9.1 “Motors for Copeland Scroll™ compressors”
- C7.10.1 “Single-phase Scroll compressor start assist components”
- C7.11.2 “Mounting parts for Copeland Scroll™ compressors”
- C7.11.4 “Sound shell installation instructions for Copeland Scroll™ compressors”
- C7.4.3 “Vapour injection Scroll compressors for heat pumps”
- C7.17.3 “Paralleling of ZH Copeland Scroll™ compressors for heat pump applications”
- C7.8.6 “Discharge gas temperature protection with ZH compressors”

2D-Drawings and certificates:

Performance and technical data:
The latest version of Emerson Climate Technologies selection software with performance data and technical data is available from our home page:

Spare parts and accessories:
http://parts.emersonclimate.eu/IPP1/

DISCLAIMER

1. The contents of this publication are presented for informational purposes only and are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability.

2. Emerson Climate Technologies GmbH and/or its affiliates (collectively "Emerson"), as applicable, reserve the right to modify the design or specifications of such products at any time without notice.

3. Emerson does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson product remains solely with the purchaser or end user.

4. Emerson does not assume responsibility for possible typographic errors contained in this publication.