Retailer Trends in Distributed Controls and Electronics

E360 Annual Conference • Atlanta, Ga. • April 11 and 12

John Wallace
Director — Innovation, Retail Solutions
Emerson

Sai Krishnan
Vice President of Global Electronics
Emerson
Discussion Topics

Introduction
- Background and evolution of control systems

What’s the difference?
- What are the different architecture “layers” of a control system?

Distributed vs. Central (or both)
- What are the key differences and similarities of the different control architectures? What are the benefits?

What do I need to plan for in the future?
- Is it possible to “future proof” my systems?
Discussion Topics

Introduction
Background and evolution of control systems

What’s the difference?
What are the different architecture “layers” of a control system?

Distributed vs. Central (or both)
What are the key differences and similarities of the different control architectures? What are the benefits?

What do I need to plan for in the future?
Is it possible to “future proof” my systems?
Slight differences in meaning across industries

Generally, BAS implies broader integration, while EMS implies focus on energy management

Refer to a collection of hardware and software to monitor and control the mechanical, electronic and lighting systems

Installed at a single site

For our purposes, these are the same thing
Multiple Factors Drove Evolution of Control Systems From Mechanical to Electronic Systems

- Early refrigeration systems transitioned from “refrigerators” to rack-based systems
- Mechanical control systems operating independently
- Adjustments made directly on equipment
- Difficult to “tune” or optimize
- No “cross-system” integration or optimization
- Limited temperature monitoring

- Advances in sensing technology and electronics enable cost-effective electronic controls
- Electronic platforms enable improved control and optimizations for energy and maintenance
- Regulatory drivers force energy and refrigerant considerations
- Case temperature monitoring for food safety and compliance
Systems Evolved From “Islands of Control” Integrated to Form a Complete Integrated Control System

- Individual systems tied together
- Information sharing across systems
- Emergence of “supervisory functions”
- Integration/Control maturity similar to auto industry evolution
 - Communication technologies
 - More sensors
 - Smarter control
 - Use data to drive actions

Evolution and progress
Discussion Topics

Introduction
- Background and evolution of control systems

What’s the difference?
- What are the different architecture “layers” of a control system?

Distributed vs. Central (or both)
- What are the key differences and similarities of the different control architectures? What are the benefits?

What do I need to plan for in the future?
- Is it possible to “future proof” my systems?
Layers and Functions of a Control System

Architecture layer
- Remote
- Supervisory
- Control

Key elements
- Remote user interface
- Site information
- Data feed

- On-site user interface
- User management
- Data logging
- Alarming
- Cross-system coordination

- Control algorithms
- Inputs and outputs
- Sensors and transducers
- Equipment interface

Hardware Can Be Combined or Separated
Integration and Communication Capability Key Part of BMS

Benefits
- Common user interface across site
- Remote access
- Normalized information (alarms, logs, etc.) using operational visibility

Architecture Layer
- Remote
- Supervisory
- Control

Supervisory layer normalizes information to provide alarms, data logs, etc.

BMS

Core HVACR/L

Third Party Devices

Water heaters, energy meters, car chargers, breaker panels, etc.

Third Party Device Statistics

By protocol
- HVAC: 70%
- MODBUS: 27%
- BACNET: 3%
- ECHELON: 6%
- REFR: 53%

By type
- HVAC: 41%
- MODBUS: 27%
- BACNET: 3%
- ECHELON: 6%
- REFR: 53%

Note: Statistics based on Emerson’s E2 support (113 devices)
Discussion Topics

Introduction
Background and evolution of control systems

What’s the difference?
What are the different architecture “layers” of a control system?

Distributed vs. Central (or both)
What are the key differences and similarities of the different control architectures? What are the benefits?

What do I need to plan for in the future?
Is it possible to “future proof” my systems?
A distributed control system (DCS) is a computerised control system for a process or plant, in which autonomous controllers are distributed throughout the system, but there is central operator supervisory control. This is in contrast to non-distributed control systems that use centralised controllers, either discrete controllers located at a central control room or within a computer. The DCS concept increases reliability and reduces installation costs by localising control functions near the process plant, but enables monitoring and supervisory control of the process remotely.

John’s definition: push control intelligence down to the “edge” while pushing monitoring and supervisory functions “up”
Distributed vs. Central: A Familiar Example

Centralized control
- Control algorithms run **in** centralized E2
- I/O boards utilized for inputs, relays

Distributed control
- Control algorithms run **in** distributed controllers
- Communication to E2 for supervisory functions

John’s definition: push control intelligence down to the “edge” while pushing monitoring and supervisory functions “up”
Predominant Refrigeration Control Architecture Varies by Region: CO₂ Impacting Future
Comparison of Refrigeration Control Architectures

Centralized control architecture

- Control elements centralized at refrigeration rack or electrical panel
- “Home runs” for sensors
- “I/O” boards for control

Distributed control architecture

- Control elements at case
- Communication “daisy chain” to EMS
- Complete control at refrigeration case
- Case electronics for control
Distributed Case Control Shifts Electronics From Electrical/Rack Rooms to Case and Simplifies Wiring

Centralized control

Electrical Room
- Elect. Panels

Refrigeration Room
- Rack House

- Temperatures (Solenoid)
- Controls
- Sensors
- Fans
- Lights
- Anti-sweat

Case 1
- Sensors
- Input Boards
- Relay Boards
- Case Electronics
- EEV

Case 2

Case 3

Case control

Electrical Room
- Elect. Panels

Refrigeration Room
- Rack House

- Comm Loop
- Defrost
- 120 VAC Feed

Case 1
- Sensors
- Input Boards
- Relay Boards
- Case Electronics
- EEV

Case 2

Case 3

<table>
<thead>
<tr>
<th></th>
<th>Rack</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Input Boards</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Relay Boards</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Case Electronics</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>EEV</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Rack</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td>N/A</td>
<td>✓</td>
</tr>
<tr>
<td>Input Boards</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Relay Boards</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Case Electronics</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>EEV</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Distributed Control Change Impact: Better Control With a Completely Integrated System

- **Rack control**
 - Four rack controllers
 - Four rack controllers, but reduced functionality
 - 250+ electronic valves and pressure sensors

- **Valves (EXV and EEPR)**
 - 200+ mechanical valves (self-managed)
 - 100+ controllers (1:1) (we control and drive the valve)
 - Controllers will manage valve (one per lineup; we control and drive the valve at cases)

- **Expansion valve control**
 - Mechanical valve (no intelligence)
 - Fully integrated system solution

- **Evaporator valve control**
 - Eight control boards (centralized controlled)
 - 200+ mechanical valves (self-managed)

- **“The solution”**
 - Purely controls solution and system not integrated (valves are not managed)

System Integration Capabilities and Domain Knowledge Key to Successful Deployment
Distributed Control Benefits

- OEM/equipment providers can factory install and test to deliver a complete working system
- Broader integration delivers more value to end user
- Reduced field wiring and startup time
- Technology flexibility allows best “fit” solution
- Additional sensors provide more data for remote troubleshooting
- Lifecycle cost advantage

Lifecycle cost considerations for distributed case control

Sensors feed data analytics to facilitate cost optimization
Discussion Topics

Introduction
Background and evolution of control systems

What's the difference?
What are the different architecture “layers” of a control system?

Distributed vs. Central (or both)
What are the key differences and similarities of the different control architectures? What are the benefits?

What do I need to plan for in the future?
Is it possible to “future proof” my systems?
Planning for the Future: Newer Systems Need Flexibility and Advanced Control to Create Smarter Buildings

- "Traditional" control architecture expanding to enable more value
- Flexibility provided by add-on "apps" which facilitate customized solutions
- Site control provides macro level control and coordination of equipment on a cross-site basis (i.e., HVAC/R)
- Transactive services provide opportunity to utilize "smart grid" as well as other cloud-based services (i.e., renewable integration, etc.)
Discussion Summary and Questions

• Global trends driving distributed control architecture transition

• Hybrid systems (i.e., case controllers with centralized rack control) are common and familiar

• Benefits include factory test, reduced startups and potentially lower lifecycle costs

• System integration capabilities as well as domain expertise key to seamless transition and creation of integrated solution

• Advanced capabilities (cloud, transitive, machine learning, etc.) drive need for advanced, flexible BMS which can be utilized with distributed controls

John’s definition: push control intelligence down to the “edge” while pushing monitoring and supervisory functions “up”
Questions?

DISCLAIMER
Although all statements and information contained herein are believed to be accurate and reliable, they are presented without guarantee or warranty of any kind, expressed or implied. Information provided herein does not relieve the user from the responsibility of carrying out its own tests and experiments, and the user assumes all risks and liability for use of the information and results obtained. Statements or suggestions concerning the use of materials and processes are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe on any patents. The user should not assume that all toxicity data and safety measures are indicated herein or that other measures may not be required.