Emerson Heat Pump Series (EHP)

Delivering Hot Water For A Wide Array Of Applications
Hot water is an everyday need for modern living. Traditionally, water is heated by burning fossil fuels or using electric heaters. These traditional methods of water heating operate at an energy efficiency of less than 1 – meaning that the heating provided is less than electrical energy or fuel consumed.

Increasing energy costs of gas or oil heating systems, coupled with the need to meet \(\mathrm{CO}_2 \) emission targets has resulted in the growing interest for dedicated heat pumps. Rather than burning fossil fuels to produce heat and consequently \(\mathrm{CO}_2 \) emissions, dedicated heat pumps use renewable energy from the environment like air, ground and water. They consume up to 70% less primary energy and therefore drastically reduce the pollution resulting from the use of fossil fuels.

An Eco-friendly Alternative

Hot water is an everyday need for modern living. Traditionally, water is heated by burning fossil fuels or using electric heaters. These traditional methods of water heating operate at an energy efficiency of less than 1 – meaning that the heating provided is less than electrical energy or fuel consumed.

Increasing energy costs of gas or oil heating systems, coupled with the need to meet \(\mathrm{CO}_2 \) emission targets has resulted in the growing interest for dedicated heat pumps. Rather than burning fossil fuels to produce heat and consequently \(\mathrm{CO}_2 \) emissions, dedicated heat pumps use renewable energy from the environment like air, ground and water. They consume up to 70% less primary energy and therefore drastically reduce the pollution resulting from the use of fossil fuels.
Heat Pumps Deliver Lower CO\textsubscript{2} Emission
And संकायरि Savings For The End-User

- Primary Energy: -38%
- Co\textsubscript{2} Emission: -55%
- Running Cost: -50 to -75%
Emerson Heat Pump (EHP) Series is a more efficient solution for heating water. It utilizes naturally available heat from water, ground and even winter air and applies a vapor compression refrigerant cycle, consuming nearly one quarter of the electrical energy required for traditional water heating. At 75% reduced energy consumption, this contributes to cleaner air.

Emerson has developed a full range (from 300 Liters/Hr To 1000 Liters/Hr) of EHP water heating units; built on heating optimized ZW scroll compressors to provide seasonal efficient heating capacity and effective domestic hot water production in residential and commercial building applications. These are available for use with multiple refrigerants like R407C and R22. It is designed to deliver 60°C water temperature irrespective of the weather conditions. It can operate from a wide ambient from 10 to 43°C. EHP units come fitted with Best-In-Class “Shell & Tube” heat exchanger technology. These are easier to service compared to other available condensers in the field. Shell & Tube heat exchangers are the perfect solution for sites where the water quality is very poor.

EHP series are designed for simple & easy operation in the field for end-users like Hotels, Hostels & Restaurants etc. These units come with “Simple User Interface” which allows service teams to get advance warnings about field failures, simple error codes for easy diagnosis & troubleshooting. This reduces the downtime and increases the life of the system.

With all these benefits, the EHP heat pump series is definitely the most reliable solution available on the market. Emerson supports water heater contractors around the world by providing specifically designed units for heating water.
ZW Water Heating Scroll; Unique Compressor Design Developed To Provide A Reliable Water Heating Solution

Environmentally Friendly Design; Low GWP Refrigerant Options Available

60° C Hot Water Available 24/7; Independent of Weather Conditions

Significant Energy Savings; Upto 75% Compared With Traditional Heating Systems

Comes With Full Electrical Protection

Intelligent System Controller For Unit Monitoring; Easy To Control & System Troubleshooting

Reliable Hydrophilic Evaporator Design For Coastal/Salty Conditions

Adjustable Water Temperature & Accurate Temperature Control

100% Factory Tested, Inspected At Dedicated Heat Pump Testing Facility

Designed & Manufactured In India; Customized For Your Requirement

Reliable And Easy To Maintain; Designed For Safe Operation
What Makes EHP Series Unique?

Copeland ZW Scroll Dedicated Scroll : For Water Heating

60°C
HOT WATER ASSURED

HOT WATER RELIABILITY

HIGH EFFICIENCY DESIGN

LOW LIFECYCLE COSTS

LOW AMBIENT PERFORMANCE

The Copeland Scroll™ ZW compressor provides energy efficient alternative for hot water heating and space heating to replace the use of electric heaters or fuel-fired boilers. It is designed basis Emerson’s strong experience of manufacturing over 120 million scroll compressors, that are recognized as reliable and efficient products. On this strong base, ZW applies Scroll Heating™ technology and multiple new product design features. Additionally ZW scrolls hold a new patent on its design.

High Efficiency
Copeland Scroll’s efficiency is primarily derived from its axial compliance design. ZW scrolls are required to operate on a much wider range of envelope compared to standard heat pump air-conditioners. This has been accomplished by a new axial compliance pressure balance combination designed especially for ZW scrolls. It also applies highly efficient, high power motor which can cater to extremes required by Heat Pump Water Heating (HPWH); to generate low internal losses at mild ambient cold tank heating and provide adequate power demanded at ambient tank reheating.
Copeland ZW Scroll Scores Over Traditional AC Scrolls

<table>
<thead>
<tr>
<th>Innovation Criteria</th>
<th>Traditional AC Scroll</th>
<th>ZW Water Heating Scroll Design Innovations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Capacity</td>
<td>Standard</td>
<td>15-20% Higher Than Standard</td>
</tr>
<tr>
<td>COP</td>
<td>Standard</td>
<td>15-20% More Than Standard</td>
</tr>
<tr>
<td>Highest Water Temperature</td>
<td>55°C</td>
<td>60°C (Heating Optimized Valve Designed For High Compression Ratios)</td>
</tr>
<tr>
<td>Hot Water Reliability</td>
<td>Standard</td>
<td>Stronger & Robust Scroll Design, High Power Motor To Operate At Low Ambient & Higher Condensing Temperature Vs AC Compressors</td>
</tr>
</tbody>
</table>

Water heating Copeland Scroll ZW compressors are designed to meet different winter ambient regions in India. For tropical regions and moderate winter ambient regions, the compressor is designed without vapor injection.

Hot Water Reliability

Water heating is characterized by long operating hours at both high load and high compression ratios. Demand for hot water is at its highest when ambient is low and when conventional heat pump capacity falls off. ZW** KA compressors are designed for reliable operation for heavier duty applications where the ambient temperature does not fall below 0°C, with significantly enhanced heating capacity, higher efficiency, and minimal requirement to reduce water outlet temperatures.

Environment Friendly Design

Low GWP refrigerants are utilized by the ZW compressor. Using ZW shows commitment in promoting green technology through the direct and indirect reduction of CO₂ emissions.
Emerson Heat Pump Offers Best ROI & Lower Operating Costs
Sustainable, Energy Efficient & A Reliable Alternative To Existing Heating Technologies

Significant Energy Savings Compared To Traditional Heating Systems; Delivers ROI Within A Year

<table>
<thead>
<tr>
<th>Hot Water Qty/Day</th>
<th>Litres</th>
<th>2800</th>
<th>Number Of Showers (No/Day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water In Temp</td>
<td>°C</td>
<td>30</td>
<td>(Typical)</td>
</tr>
<tr>
<td>Water Out Temp</td>
<td>°C</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>Total Heat Energy</td>
<td>Kcal</td>
<td>84000</td>
<td>Input</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solar Systems</th>
<th>Unit</th>
<th>Commercial Heat Pump Heating</th>
<th>Commercial Electric Heating</th>
<th>Solar With 50% Electric Backup</th>
<th>Solar With 100% Electric Backup</th>
<th>LPG</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Unit</td>
<td>Varies</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>kg</td>
<td>Litres</td>
</tr>
<tr>
<td>Energy/ Fuel Unit</td>
<td>Kcal</td>
<td>860</td>
<td>860</td>
<td>860</td>
<td>860</td>
<td>11100</td>
<td>10994</td>
</tr>
<tr>
<td>Average COP Of System</td>
<td>Ratio</td>
<td>3.50</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Energy/ Fuel Unit In System</td>
<td>Kcal</td>
<td>3010</td>
<td>817</td>
<td>817</td>
<td>817</td>
<td>8880</td>
<td>8795</td>
</tr>
<tr>
<td>Req Fuel Unit</td>
<td>Varies</td>
<td>28</td>
<td>103</td>
<td>51</td>
<td>103</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Fuel Cost/ Unit</td>
<td>INR</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>60.00</td>
<td>50.00</td>
</tr>
<tr>
<td>Energy Cost/ Day</td>
<td>INR/ Day</td>
<td>223.3</td>
<td>822.5</td>
<td>411.3</td>
<td>822.5</td>
<td>567.6</td>
<td>477.5</td>
</tr>
<tr>
<td>Energy Cost Comparison</td>
<td>%</td>
<td>Base</td>
<td>268</td>
<td>344.3</td>
<td>254.3</td>
<td>125674</td>
<td>92811</td>
</tr>
<tr>
<td>INR Difference/ Day</td>
<td>Base</td>
<td>599.3</td>
<td>344.3</td>
<td>254.3</td>
<td>125674</td>
<td>92811</td>
<td></td>
</tr>
<tr>
<td>Annual Energy Saving In INR</td>
<td>Base</td>
<td>218732</td>
<td>105635</td>
<td>125674</td>
<td>92811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Energy Saving In %</td>
<td>Base</td>
<td>73%</td>
<td>56%</td>
<td>61%</td>
<td>53%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROI @ Heat Pump Cost Of 1 Lakhs</td>
<td>Base</td>
<td>0.46</td>
<td>0.95</td>
<td>0.80</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heat pumps deliver ROI in less than 6 months for electric water heating; 1 year for solar systems with backup.

Results shown from above analysis are designed for comparative purposes only. The assumptions and data used for the analysis may change depending on the market conditions. Emerson cannot be held responsible for any errors, omissions, or misrepresentations in the data represented. If you need confirmation on the detailed analysis, please get in touch with your Emerson Representative.
Emerson Heat Pump Comparison With Competing Technologies
Heat pump technology scores across all parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Heat Pump</th>
<th>Solar Water Heater</th>
<th>Electric Geyser</th>
<th>LPG Fired</th>
<th>Diesel Fired</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Savings w.r.t Conventional</td>
<td>Upto 75%</td>
<td>60-75%</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Space Requirement</td>
<td>5% Of Solar</td>
<td>N.A</td>
<td>5% Of Solar</td>
<td>5% Of Solar</td>
<td>5% Of Solar</td>
</tr>
<tr>
<td>Climate Independent</td>
<td>Yes</td>
<td>No</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Upto 400%</td>
<td>Upto 95%</td>
<td>Upto 95%</td>
<td>Upto 80%</td>
<td>Upto 80%</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Minimal</td>
<td>Panel Cleaning</td>
<td>High</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Environment Friendly</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Safety</td>
<td>Yes</td>
<td>Yes</td>
<td>Moderate</td>
<td>No</td>
<td>Moderate</td>
</tr>
<tr>
<td>Depreciation</td>
<td>80% In 1st Year</td>
<td>80% In 1st Year</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Poor Water Quality Leads To Scaling Issues & Abnormal Operating Conditions

Many a time water quality can cause serious problems in hot water systems. The water should be tested for hardness, acidity and iron content before a heat pump is installed. Your contractor or equipment manufacturer can tell you what level of water is acceptable. Mineral deposits can build up inside the heat pump’s heat exchanger. Some possible issues that can crop up are:
– Scale formation
– Pressure drops
– Efficiency loss
– High discharge pressure and can lead to system failure

Our Solution: Shell & Tube Condenser For Handling Poor Quality Of Water

Our units come fitted with best in class “Shell & Tube” heat exchanger technology. These are easier to service compared to other available Heat exchangers like Tube In tube, plate type heat exchangers etc. Shell & Tube heat exchangers are the perfect solution for India market where the water quality is very poor at site. All condenser models are simple to install and can be easily opened for inspection, cleaning and maintenance purposes

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Shell & Tube</th>
<th>Tube In Tube</th>
<th>Plate Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Transfer Efficiency</td>
<td>Comparable</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Ability To Handle High Operating Pressures & Temperature</td>
<td>✔</td>
<td>Moderate</td>
<td>Limitation Due To Bonding Material</td>
</tr>
<tr>
<td>Leakage Concerns</td>
<td>Easy To Locate Leaks</td>
<td>Difficult</td>
<td>Difficult To Locate Leaks</td>
</tr>
<tr>
<td>Corrosion</td>
<td>Moderate</td>
<td>Moderate</td>
<td>More Prone (Titanium)</td>
</tr>
<tr>
<td>Ability To Handle Impure Water/ Scaling</td>
<td>Can Handle Any Water Quality</td>
<td>Needs Treated Water</td>
<td>Needs Treated Water</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Easier To Clean/ Maintain Using Brush</td>
<td>Difficult</td>
<td>Difficult</td>
</tr>
</tbody>
</table>
Individual Components Easily Accessible In Field
Designed For Easy Maintenance In Field

- Multiple Compartment Design For Easy Access To Pump, Compressor & Components
- Service Panels Removable For Access
- Shell & Tube HX Slides Out After Disconnecting Valves
Simple To Use & Control; Complete Diagnostic Capability & Full Electrical Protection

Simple To Use Diagnostics Features

EHP series are designed for simple & easy operation in the field for end-users like hotels, hostels & restaurants etc. These units come with “Simple User Interface” which allows service teams to get advance warnings about field failures, simple error codes for easy diagnosis & troubleshooting. This reduces the downtime and increases the life of the system.

Diagnostic Features For Easy Troubleshooting

Controller User Interface

LED Display: Probes, Parameters, Set Point, Faults Etc
Visual Icon Indications Of Components
Keys For User Control
Visual Indication Of Phase Status
System Protector/End User
1. No Incoming Water Flow
2. High Discharge Pressure Cut Off (Manual Reset only)
3. Low Pressure Cut Off
4. Water Tank Temperature
5. Any Part / Sensor Failure
6. Fuse Failure Display
7. Controller Communication Error
8. Daily Usage Programming Capability

Complete Electrical Protection For Field Issues

• Under/ Low Voltage Protection
• Single Phasing/ Phase Missing & Reversal Protection
• Compressor Overload Protector
• Pump Overload Protector
• MCB/Fuse As Standard

9. Communication Port - To Connect To Laptop (RS485)
10. Installer Password lock
11. Master Password lock
12. Memory For Last 30 Errors Occurred

Component Protection

Compressor
1. Single Phase, Phase Missing/Reversal
2. Under/Over Voltage & Current
3. High Discharge Temperature

Water Pump
1. Dry Run Protection
2. High Current Protection

Fan Motors
1. Healthy Status
2. High Current
3. One Fan Fails

Contactors For Compressor
Contactors For Fan
Contactors For Pump
Sensor Inputs For Control

Line Voltage Monitor (Under Voltage/Over Voltage/Phase Reversal/Phase Missing Protection)
MCB
Nomenclature

Examples...
EHP–R025X–TEA–100 (Recip. - 250 Ltr/Hr With R22, 3Ph)
EHP–Z025X–PGA–500 (Scroll - 250 Ltr/Hr With R134a, 1Ph)
EHP–Z500X–TBA–999 (Scroll - 5000 Ltr/Hr With R407C, 3Ph)

Nomenclature(R1) - Heat Pump
Technical Specifications

<table>
<thead>
<tr>
<th>Nominal Capacity</th>
<th>Model Name</th>
<th>3 HP</th>
<th>5 HP</th>
<th>10 HP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EHP-Z030X-TEA/TBA-000</td>
<td>EHP-Z050X-TEA/TBA-000</td>
<td>EHP-Z100X-TEA/TBA-000</td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td>°C</td>
<td>380V/50Hz/3Ph</td>
<td>380V/50Hz/3Ph</td>
<td>380V/50Hz/3Ph</td>
</tr>
<tr>
<td>Operating Ambient Temp</td>
<td>°C</td>
<td>10 to 43</td>
<td>10 to 43</td>
<td>10 to 43</td>
</tr>
<tr>
<td>Max. Water Temperature</td>
<td>°C</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Water Heating</td>
<td>Capacity*</td>
<td>kW</td>
<td>11</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td>Input Power</td>
<td>kW</td>
<td>3.2</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>COP*</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>Hot Water Out Put</td>
<td>LPH</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Max. Input Current</td>
<td>A</td>
<td>7.1</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>Refrigerant Gas</td>
<td>R22/R407C</td>
<td>R22/R407C</td>
<td>R22/R407C</td>
</tr>
<tr>
<td>Refrigerant Qty.</td>
<td>Kg</td>
<td>1.5</td>
<td>2.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Compressor</td>
<td>Type</td>
<td>Scroll/ ZW</td>
<td>Scroll/ ZW</td>
<td>Scroll/ ZW</td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>ZW34KAE-TFP-542</td>
<td>ZW61KAE-TFP-542</td>
<td>ZW125KAE-TFP-522</td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td>kW</td>
<td>10.1</td>
<td>18.1</td>
</tr>
<tr>
<td></td>
<td>Input Power</td>
<td>kW</td>
<td>2.5</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>A</td>
<td>4.5</td>
<td>8</td>
</tr>
<tr>
<td>Fan Motor</td>
<td>Quantity</td>
<td>pcs</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Power Watts</td>
<td>160</td>
<td>200</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Supply Volt/Ph.</td>
<td>230V/1Ph</td>
<td>230V/1Ph</td>
<td>230V/1Ph</td>
</tr>
<tr>
<td>Water Pump</td>
<td>Power Input</td>
<td>kW</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>Head feet</td>
<td>15</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Supply Volt/Ph.</td>
<td>230V/1Ph</td>
<td>230/50Hz</td>
<td>230V/1Ph</td>
</tr>
<tr>
<td></td>
<td>Rating Current</td>
<td>A</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>Heat Exchanger</td>
<td>Type / Model</td>
<td>Shell & Tube</td>
<td>Shell & Tube</td>
<td>Shell & Tube</td>
</tr>
<tr>
<td>Water Piping</td>
<td>Inlet Pipe Size mm/Inch</td>
<td>19 / 0.75"</td>
<td>25 / 1"</td>
<td>25 / 1"</td>
</tr>
<tr>
<td></td>
<td>Outlet Pipe Size mm/Inch</td>
<td>19 / 0.75"</td>
<td>25 / 1"</td>
<td>25 / 1"</td>
</tr>
<tr>
<td></td>
<td>Min. Water Flow LPH</td>
<td>1400</td>
<td>2800</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>(Recommended)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Dimension (DxWxH) mm</td>
<td>490 x 1110 x 790</td>
<td>710 x 1250 x 1000</td>
<td>710 x 1265 x 1335</td>
</tr>
<tr>
<td></td>
<td>Approx. Weight Kg</td>
<td>190</td>
<td>230</td>
<td>400</td>
</tr>
</tbody>
</table>

Rating Condition - At Ambient of 25°C & Inlet Water of 25°C; Final Water Temperature Of 55°C
Final Water Temperature Achieved in Re-circulation/Re-heating mode.
Emerson Water Heat Pumps
Catering To A Wide Range Of Applications

Hotels

20° to 60°C
- Sanitary
- Kitchen
- Laundry

Hospitals

60°C
- Steam Baths
- Laundry

Restaurants

20° to 60°C
- Utensils
- Washing
Spas/Bungalows
30° to 60°C
- Swimming Pool
- Steam Bath

Hostels
55° to 60°C
- Sanitary
Emerson Heat Pump Tested At In-House Laboratory For Performance & Reliability

- Dedicated test lab for heat pump reliability & performance built at Karad test lab
- Controlled room ambient from 5° to 46°C
- Monitoring of various parameters upto a measurement accuracy of +/-0.5%
- Real field issues simulation & system correction
- Capability To Measure Water Flow, Temperature, Pressures, Electrical and System
- All Instruments Calibration Performed By NABL Accredited Labs only
- Certifications Of Facility
 - QMS - ISO 9000
 - EMS - ISO 14000
 - UL / IEC Stage - 3 / Intertek
- Compliant With Emerson Inc International Guidelines
Disclaimer

Technical data given was correct at the time of printing. Updates may occur, and should you need confirmation of a specific value, please contact Emerson stating clearly the information required. Emerson cannot be held responsible for errors in capacities, dimensions, etc., stated herein. Products, specifications and data in this literature are subject to change without notice. The information given herein is based on data and tests which Emerson believes to be reliable and which are in accordance with today’s technical knowledge. It is intended for use by persons having the appropriate technical knowledge and skill, at their own discretion and risk. Our products are designed and adapted for fixed locations. For mobile applications, failures may occur. The suitability for this has to be assured from the plant manufacturer, which may include making appropriate tests.

Note

The components listed in this catalogue are not released for use with caustic, poisonous or flammable substances. Emerson cannot be held responsible for any damage caused by using these substances.

About Emerson

Emerson (NYSE:EMR), headquartered in St. Louis, Missouri (USA), is a global technology and engineering company providing innovative solutions for customers in industrial, commercial, and residential markets. Our Emerson Automation Solutions business helps process, hybrid, and discrete manufacturers maximize production, protect personnel and the environment while optimizing their energy and operating costs. Our Emerson Commercial and Residential Solutions business helps ensure human comfort and health, protect food quality and safety, advance energy efficiency, and create sustainable infrastructure. For more information visit Emerson.com
CONTACTS LIST
EMERSON COMMERCIAL & RESIDENTIAL SOLUTIONS
SALES OFFICES:

Gurgaon
Emerson Climate Technologies (India) Pvt. Ltd.
18th Floor, Tower B, Building No. 5,
Epitome, DLF Cyber City,
Phase - III, Gurgaon 120 002
Tel: (91-124) 489 4500

Mumbai
Emerson Climate Technologies (India) Pvt. Ltd.
Delphi B-Wing, 601-602,
6th Floor, Central Avenue,
Hiranandani Business Park, Powai,
Mumbai-400076
Tel: (91-22) 6662 0566

Secunderabad
Emerson Climate Technologies (India) Pvt. Ltd.
C/o Maruthi Corporate Point,
Swapnalok Complex 2nd Floor, Block -B,
Sarojini Devi Road, Secunderabad-500003
Tel: (91-40) 3315 4018

COLD CHAIN CENTERS

Chakan
Emerson Climate Technologies (India) Pvt. Ltd.
Plot No. G-8/3, Block M.I.D.C.
Chakan Industrial Area, Phase - III,
Taluka : Khed. Dist : Pune - 410 501
Tel: (91-2135) 625300

Gurgaon
Emerson Climate Technologies (India) Pvt. Ltd.
Plot No. 127,
Udyog Vihar, Phase IV,
Gurgaon - 122 015, Haryana
Tel: (91 124) 2866600

PLANT
Atit Pali Road, Atit - 415 519, Maharashtra.
Tel: (91-2162) 224200, Fax: (91-2162) 262069

REGISTERED HEAD OFFICE
Emerson Climate Technologies (India) Pvt. Ltd.
Plot No. 23, Rajiv Gandhi Infotech Park, Phase - II, Hinjewadi, Pune-411 057
Tel: (91-20) 4200 2000, Fax: (91-20) 4200 2099

www.EmersonClimate.com/India
© 2017 Emerson Climate Technologies (India) Pvt. Ltd. All rights reserved.

Emerson and Copeland are trademarks of Emerson Electric Co. or one of its affiliated companies.

CONSIDER IT SOLVED: