Trends in Refrigeration System Architecture and CO$_2$

Andre Patenaude
Emerson Climate Technologies
What’s Hot in Supermarket Refrigeration?

Energy
- MT Cases With Doors
- LED Lighting
- Low Condensing
- ECM Fan Motors for Condenser and Case Fans

Environment
- EPA Proposal to Delist R404A
- R-22 Retrofits
- Natural Refrigerants
- LCCP Analysis

Equipment
- Mechanical to Electronic Control
- Connected Devices/Mobile
- Technician Shortage
- ASHRAE Commissioning Guide

Economics
- Information Age (Traceable, Feedback)
- Millennials (e-Commerce, Local, Organic)
- “Smaller” Format Stores
- Foodservice Integration

Other
- “Smaller” Format Stores
$35k/Year Energy Savings per Store by Implementing Low Condensing

Boston Temperature Profile

- **Opportunity for Savings**
 - 5°F: 0 Hours/Yr
 - 25°F: 100 Hours/Yr
 - 45°F: 500 Hours/Yr
 - 65°F: 1000 Hours/Yr
 - 85°F: 500 Hours/Yr

Compressor Performance

- **Capacity**
 - 50°F: $0K
 - 70°F: $50K
 - 90°F: $100K
 - 110°F: $150K

- **Power**
 - 50°F: $0K
 - 70°F: $25K
 - 90°F: $50K
 - 110°F: $75K

≈20% Increase in Compressor Efficiency for a 10°F Drop in Condensing Temperature

% Time Below 60°F

- 5°F: 90%
- 25°F: 80%
- 45°F: 70%
- 65°F: 50%
- 85°F: 20%

Typical Boston Supermarket

- 50 Min Cond: 35% Savings
- 70 Min Cond: 14% Savings
- 90 Min Cond: $35K Savings

Total Annual Cost (@ $0.9/kWh)

- 50 Min Cond: $35K
- 70 Min Cond: $50K
- 90 Min Cond: $75K

E360
CoreSense Provides Step Change in System Reliability and Troubleshooting

Compressor Protection & Control

- Discharge Temperature Protection
- Liquid Injection Control via Electronic Stepper Valve
- Digital Modulation Control
- 15 LED Alarm Codes
- Remote Communications (Modbus)
- Phase Monitoring, Short Cycling, Welded Contactor & Proofing Through Current Sensing

Remote Communications & Reset

- Remote Communications Management
- Facility Manager
- Emerson Site Manager
- Alarm Status
- Discharge Temp
- Run Time/Cycle Count
- Model & Serial #
- Amps
- 7-Day Alarm History
Convenience, Fresh, Specialty and e-Commerce Shake up Grocery Landscape

Wal-Mart Hopes To Boost Sales By Opening Convenience Stores

Target to Open 'Smallest Location Ever'
Test store will feature "everyday essentials," including grab-and-go sandwiches

Walmart U.S. accelerates small store growth
Expansion program doubles initial forecast

Dollar General and Family Dollar the New Small Format Grocery Stores?

US organic food market to grow 14% from 2013-18

Aldi to Boost Its Number of U.S. Stores by 50%

Lidl postpones plan to open U.S. stores to 2018

Ethnic Supermarket Industry Expands

AmazonFresh groceries arrive in Brooklyn
Energy Usage Will Become Primary Source for CO₂ Emissions

Boston, MA LCCP Analysis

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Energy Consumption (lbs CO₂/yr)</th>
<th>Life Cycle Climate Performance (LCCP)</th>
<th>Direct Global Warming</th>
<th>Indirect Global Warming</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Booster</td>
<td>-15.3% / -62.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary – 300 GWP</td>
<td>-17.2% / -63.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cascase – 300 GWP MT</td>
<td>-12.5% / -61.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500 GWP DX</td>
<td>-14.8% / -44.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500 GWP DX</td>
<td>-3.4% / -39.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LT = Low Temperature
MT = Medium Temperature
DX = Direct Expansion
LCCP = Life Cycle Climate Performance
Understanding Assumptions Critical for “Apples to Apples” Comparisons

- **Minimum Condensing Temperature**:
 - Energy Savings vs. Condensing Temperature (F)
 - 90°F Baseline

- **Compressor Superheat**:
 - Energy Savings vs. Compressor Superheat (F)
 - 50°F Baseline

- **Subcooling**:
 - Energy Savings vs. Subcooling (F)
 - OF Baseline

- **Temperature Differential (TD)**:
 - Energy Savings vs. TD (F)
 - 17LT, 22MT Baseline
Refrigerant Change Being Driven by Regulations and Voluntary Actions

Regulations

- **Montreal Protocol**
 - Targets Ozone Depletion (R-22) Signed in 1987

- **North American Proposal**
 - Targets CO₂ Emissions (High Global Warming)

Organizations

- **United Nations Framework Convention on Climate Change**
- **CCAC**
 - CLIMATE AND CLEAN AIR COALITION TO REDUCE SHORT-LIVED CLIMATE POLLUTANTS
- **ipcc**
 - INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE
- **California Environmental Protection Agency**
- **Air Resources Board**
- **Danish Ministry of the Environment**
 - Environmental Protection Agency
 - HFC Ban & Tax
- **Australian Government**
 - Department of Sustainability, Environment, Water, Population and Communities
 - Carbon Tax
- **European Commission**
 - F-Gas Regulation
- **The Consumer Goods Forum**
- **Green Chill**
- **U.S. Environmental Protection Agency**
 - ADVANCED REFRIGERATION PARTNERSHIP
- **ammonia 21**
 - everything natural
- **shecco**
 - natural refrigerants
- **AMTOSphere 21**

Natural Refrigerants Gaining Traction in North American Supermarkets

Leading Edge Field Trials

- **H-E-B**
 Austin, TX
 R290
 Micro-Distributed

- **Sprouts**
 Dunwoody, GA
 Transcritical CO₂ Booster

- **Albertsons**
 Carpinteria, CA
 Ammonia/CO₂ Hybrid

- **Walgreens**
 Evanston, IL
 Net Zero Store, Geothermal, CO₂

CO₂ Installed Base

Source: Shecco Guide 2012: Natural Refrigerants for Europe

Source: ATMOsphere America 2014 – Hillphoenix Market Progress
General Uses for CO$_2$

- Fire Extinguishers
- Beverages
- Plants
- Solvents
- Modified Atmospheric Packaging
- Refrigeration
Where Does CO₂ (R744) Come From?

- **By-product of:**
 - Fermentation of Ethanol
 - Combustion of Fossil Fuels
 - Liquefaction of Air

- **Naturally Occurring in Wells**

- **The Atmosphere Comprises Approximately 0.04% CO₂ (370 ppm)**

- **Manufacturing Process:**
 - Filtration, Drying and Purification
 - Results in Different Grades of CO₂ for Different Applications:
 - Industrial Grade, 99.5%
 - Bone Dry, 99.8%
 - Anaerobic, 99.9%
 - **Coleman Grade, 99.99%** (Used in Refrigeration)
 - Research Grade, 99.999%
 - Ultra Pure, 99.9999%
Benefits of Using CO$_2$ as a Refrigerant

- CO$_2$ is a natural refrigerant with very low global warming potential
 - ODP = 0; GWP = 1
- Non-toxic, non-flammable
- CO$_2$ is an inexpensive refrigerant compared with HCFCs and HFCs
- CO$_2$ has better heat transfer properties compared to conventional HCFCs and HFCs
- More than 50% reduction in HFC refrigerant charge possible (high volumetric cooling capacity)
- CO$_2$ lines are typically one to two sizes smaller than traditional DX piping systems
- Excellent material compatibility
- System energy performance equivalent or better than traditional HFC systems in cool climates
Basic Considerations When Using CO₂ as a Refrigerant

- The critical point is the condition at which the liquid and gas densities are the same. Above this point, distinct liquid and gas phases do not exist.
- The triple point is the condition at which solid, liquid and gas coexist.
- The triple point of carbon dioxide is high (60.6 psi) and the critical point is low (87.8 °F) compared to other refrigerants.
Basic Properties of R744, R404A and R134a Refrigerants

<table>
<thead>
<tr>
<th></th>
<th>R744</th>
<th>R404A</th>
<th>R134a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature at atmospheric pressure</td>
<td>-109.3 °F (-78.5 °C) (Temp. of dry ice)</td>
<td>-50.8 °F (-46 °C) (Saturation temp.)</td>
<td>-14.8 °F (-26 °C) (Saturation temp.)</td>
</tr>
<tr>
<td>Critical temperature</td>
<td>87.8 °F (31 °C)</td>
<td>161.6 °F (72 °C)</td>
<td>213.8 °F (101 °C)</td>
</tr>
<tr>
<td>Critical pressure</td>
<td>1,055 psig (72.8 barg)</td>
<td>503 psig (34.7 barg)</td>
<td>590 psig (40.7 barg)</td>
</tr>
<tr>
<td>Triple point pressure</td>
<td>60.6 psig (4.2 barg)</td>
<td>0.44 psig (0.03 bar abs)</td>
<td>0.0734 psig (0.005 bar abs)</td>
</tr>
<tr>
<td>Pressure at a saturated temperature of 20 °C (68 °F)</td>
<td>815 psig (56.2 barg)</td>
<td>144 psig (9.9 barg)</td>
<td>68 psig (4.7 barg)</td>
</tr>
<tr>
<td>Global warming potential</td>
<td>1</td>
<td>3922</td>
<td>1430</td>
</tr>
</tbody>
</table>
Pressure — Enthalpy Diagrams for CO₂
Selecting the Best System: Secondary vs. Cascade vs. Booster

SECONDARY

CASCADE

TRANSCRITICAL BOOSTER
The high-stage system (HFC, HC or ammonia) cools the liquid CO$_2$ in the secondary circuit like a simple chiller system.
- CO$_2$ is cooled to 26 °F (275 psig) for the MT load and -13 °F (181 psig) for the LT load.

- The CO$_2$ is pumped around the load.
- **It is volatile, so unlike a conventional secondary fluid such as glycol it does not remain as a liquid. Instead, it partially evaporates.**
- It therefore has a significantly greater cooling capacity than other secondary fluids.
- This reduces the pump power and the temperature difference at the heat exchanger.
Selecting the Best System: Secondary vs. Cascade vs. Booster
Typical Retail Cascade (Hybrid) System

- **High-stage (HFC) System:**
 - Provides cooling for the medium-temperature load
 - Removes the heat from the condensing CO\(_2\) in the low stage at the cascade heat exchanger

- **Low-stage (CO\(_2\)) System:**
 - CO\(_2\) condensing temperature is maintained below the critical point
 - CO\(_2\) pressures are similar to R-410A
 - Utilizes CO\(_2\) as a direct expansion refrigerant
 - Uses efficient and quiet CO\(_2\) subcritical compressors
 - CO\(_2\)-specific evaporators
 - Electronic expansion valves with EEVs for steady, automatic control of superheat leaving the evaporators
 - All liquid lines must be insulated
Typical Cascade System Operating Pressures

Low Side (Suction)
- Typ. Operating Suction 200–275 psig

High Side (Discharge and Receiver)
- Typ. Operating Discharge 400–500 psig

- Normal Operating Suction: 200–275 psig
- High Suction: >275 psig
- Low Suction: <200 psig

- Low- Side Pressure Relief (Recip.): 350 psig
- Low-Side Pressure Relief (Scroll): 475 psig

- Normal Operating Discharge: 400–500 psig
- High Discharge: >500 psig
- Low Discharge: <400 psig

- Pressure Regulating Relief Valve: 560 psig
- Main Pressure Relief Valve: 625 psig

Courtesy of “The Green Chill Partnership and Hill Refrigeration”
Selecting the Best System: Secondary vs. Cascade vs. Booster
CO₂ Booster Refrigeration System in Transcritical Operation

- CO₂ is circulated in LT and MT sections
- Gas cooler in supercritical mode
- Condenser in subcritical mode
- Three separate sources of suction gas for MT compressors
- LT requires two stages to keep compression ratios low and discharge temperatures from exceeding the oil’s temperature limit
CO₂ Booster Refrigeration System

Transcritical Compressors

- Higher gas density of CO₂ results in smaller compressor displacement with equivalent R404A motor size
- PRV Relief Valves: 66/135 bar (957/1,958 psig) for low/high side
- Max. Operating Pressure = 120 bar (1,740 psig)
- Inverter Release: 25–70 hz
- CoreSense Protection
- Helps maintain sub-cooling in condenser when in subcritical mode
- Create pressure drop into the flash tank
- Optimizes COP during transcritical operation
Five Ways of Improving Efficiencies in Warm Ambient Regions

- Spray Nozzles
- Adiabatic Gas Coolers
- Parallel Compression
- Sub-Cooling
- Ejectors
CO\textsubscript{2} Booster Refrigeration System

Case Controls and EEV Cases

- Case controls and EEV (PWM or stepper)
- Due to high heat transfer coefficient of \textit{CO\textsubscript{2}} vs. HFC, if the same HFC rated evaporators are used, greater capacities and lower TD would result with improved efficiency
- Smaller tubing coils can be used to reduce material cost and footprint
CO₂ Booster Refrigeration System
Subcritical Compressors

- LT subcritical compressors are same as those used in cascade systems
- Discharges into suction of transcritical

- High side: 43 bar / 630 psig
- Low side: 28 bar / 406 psig
- Low side “PRV” supplied with – 34.4 barg (500 psig)
- Oil: RL68HB POE
Emerson Offering

- Centralized Controller
- Distributed Controller
- Transcritical Compressors
- Subcritical Compressors, Semi and Scroll
- Oil Level Controls
- Compressor VFD
- Condenser Motor VFD
- High-Pressure Controller
- Bypass Valve Controller
- High-Pressure Valves
- Case Controllers
- Electronic Expansion Valves
- System Protectors
- Pressure Transducers
- Leak Detection
Conclusions

Transcritical systems are usually used in areas where the ambient temperature is generally low (i.e., predominantly below 68 °F to 77 °F), such as northern Europe, Canada and the northern U.S. New system designs and technology are improving efficiency in warmer climates.

Cascade and secondary systems (subcritical CO₂) are usually used in high ambient areas such as southern Europe, the mid- to southern U.S., and much of Central and South America, Asia, Africa and Australia.

The use of transcritical systems in high ambients generally results in low efficiency; hence, cascade or secondary systems are preferred in those areas.
1. Introduction

2. CO₂ Basics and Considerations as a Refrigerant

3. Introduction to R744 Systems

4. R744 System Design

5. R744 Systems — Installation, Commissioning and Service
System Architectures — Multiple Choices Being Evaluated

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Energy</th>
<th>Environment</th>
<th>Equipment</th>
<th>Economics</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized DX</td>
<td>![Energy Icon]</td>
<td>![Environment Icon]</td>
<td>![Equipment Icon]</td>
<td>![Economics Icon]</td>
<td>407 → HFO Blend</td>
</tr>
<tr>
<td>Distributed DX</td>
<td>![Energy Icon]</td>
<td>![Environment Icon]</td>
<td>![Equipment Icon]</td>
<td>![Economics Icon]</td>
<td>407 → HFO Blend</td>
</tr>
<tr>
<td>Secondary</td>
<td>![Energy Icon]</td>
<td>![Environment Icon]</td>
<td>![Equipment Icon]</td>
<td>![Economics Icon]</td>
<td>HFO Blend</td>
</tr>
<tr>
<td>Sub-critical CO$_2$ (HFC/CO$_2$ Cascade)</td>
<td>![Energy Icon]</td>
<td>![Environment Icon]</td>
<td>![Equipment Icon]</td>
<td>![Economics Icon]</td>
<td>Ammonia/CO$_2$</td>
</tr>
<tr>
<td>Transcritical CO$_2$ (CO$_2$ Booster)</td>
<td>![Energy Icon]</td>
<td>![Environment Icon]</td>
<td>![Equipment Icon]</td>
<td>![Economics Icon]</td>
<td>Cost/Efficiency</td>
</tr>
<tr>
<td>Micro-Distributed</td>
<td>![Energy Icon]</td>
<td>![Environment Icon]</td>
<td>![Equipment Icon]</td>
<td>![Economics Icon]</td>
<td>Hydrocarbons HFOs</td>
</tr>
</tbody>
</table>
Thank You!

Questions?

DISCLAIMER
Although all statements and information contained herein are believed to be accurate and reliable, they are presented without guarantee or warranty of any kind, expressed or implied. Information provided herein does not relieve the user from the responsibility of carrying out its own tests and experiments, and the user assumes all risks and liability for use of the information and results obtained. Statements or suggestions concerning the use of materials and processes are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe on any patents. The user should not assume that all toxicity data and safety measures are indicated herein or that other measures may not be required.